Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj667 Structured version   Visualization version   GIF version

Theorem bnj667 30076
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj667 ((𝜑𝜓𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem bnj667
StepHypRef Expression
1 bnj446 30036 . 2 ((𝜑𝜓𝜒𝜃) ↔ ((𝜓𝜒𝜃) ∧ 𝜑))
21simplbi 475 1 ((𝜑𝜓𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031  w-bnj17 30005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033  df-bnj17 30006
This theorem is referenced by:  bnj570  30229  bnj594  30236  bnj944  30262  bnj969  30270
  Copyright terms: Public domain W3C validator