Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhcompl-zf Structured version   Visualization version   GIF version

Theorem axhcompl-zf 27239
 Description: Derive axiom ax-hcompl 27443 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhcompl-zf (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑈

Proof of Theorem axhcompl-zf
StepHypRef Expression
1 axhil.2 . . . . . 6 𝑈 ∈ CHilOLD
2 simpl 472 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → 𝐹 ∈ (Cau‘(IndMet‘𝑈)))
3 eqid 2610 . . . . . . 7 (IndMet‘𝑈) = (IndMet‘𝑈)
4 eqid 2610 . . . . . . 7 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
53, 4hlcompl 27155 . . . . . 6 ((𝑈 ∈ CHilOLD𝐹 ∈ (Cau‘(IndMet‘𝑈))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
61, 2, 5sylancr 694 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
7 eldm2g 5242 . . . . . 6 (𝐹 ∈ (Cau‘(IndMet‘𝑈)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
87adantr 480 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↔ ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))))
96, 8mpbid 221 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → ∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
10 df-br 4584 . . . . . 6 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 ↔ ⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))))
111hlnvi 27132 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 df-hba 27210 . . . . . . . . . . . 12 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
13 axhil.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
1413fveq2i 6106 . . . . . . . . . . . 12 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
1512, 14eqtr4i 2635 . . . . . . . . . . 11 ℋ = (BaseSet‘𝑈)
1615, 3imsxmet 26931 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘ ℋ))
174mopntopon 22054 . . . . . . . . . 10 ((IndMet‘𝑈) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ))
1811, 16, 17mp2b 10 . . . . . . . . 9 (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ)
19 lmcl 20911 . . . . . . . . 9 (((MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘ ℋ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥) → 𝑥 ∈ ℋ)
2018, 19mpan 702 . . . . . . . 8 (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ)
2120a1i 11 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝑥 ∈ ℋ))
2213, 11, 15, 3, 4h2hlm 27221 . . . . . . . . . . . 12 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑𝑚 ℕ))
2322breqi 4589 . . . . . . . . . . 11 (𝐹𝑣 𝑥𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑𝑚 ℕ))𝑥)
24 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
2524brres 5323 . . . . . . . . . . 11 (𝐹((⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) ↾ ( ℋ ↑𝑚 ℕ))𝑥 ↔ (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝐹 ∈ ( ℋ ↑𝑚 ℕ)))
26 ancom 465 . . . . . . . . . . 11 ((𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝐹 ∈ ( ℋ ↑𝑚 ℕ)) ↔ (𝐹 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2723, 25, 263bitri 285 . . . . . . . . . 10 (𝐹𝑣 𝑥 ↔ (𝐹 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2827baib 942 . . . . . . . . 9 (𝐹 ∈ ( ℋ ↑𝑚 ℕ) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
2928adantl 481 . . . . . . . 8 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → (𝐹𝑣 𝑥𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥))
3029biimprd 237 . . . . . . 7 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥𝐹𝑣 𝑥))
3121, 30jcad 554 . . . . . 6 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → (𝐹(⇝𝑡‘(MetOpen‘(IndMet‘𝑈)))𝑥 → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3210, 31syl5bir 232 . . . . 5 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → (⟨𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → (𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
3332eximdv 1833 . . . 4 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → (∃𝑥𝐹, 𝑥⟩ ∈ (⇝𝑡‘(MetOpen‘(IndMet‘𝑈))) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥)))
349, 33mpd 15 . . 3 ((𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
35 elin 3758 . . 3 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝐹 ∈ (Cau‘(IndMet‘𝑈)) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)))
36 df-rex 2902 . . 3 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥 ↔ ∃𝑥(𝑥 ∈ ℋ ∧ 𝐹𝑣 𝑥))
3734, 35, 363imtr4i 280 . 2 (𝐹 ∈ ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑𝑚 ℕ)) → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
3813, 11, 15, 3h2hcau 27220 . 2 Cauchy = ((Cau‘(IndMet‘𝑈)) ∩ ( ℋ ↑𝑚 ℕ))
3937, 38eleq2s 2706 1 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∃wrex 2897   ∩ cin 3539  ⟨cop 4131   class class class wbr 4583  dom cdm 5038   ↾ cres 5040  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℕcn 10897  ∞Metcxmt 19552  MetOpencmopn 19557  TopOnctopon 20518  ⇝𝑡clm 20840  Caucca 22859  NrmCVeccnv 26823  BaseSetcba 26825  IndMetcims 26830  CHilOLDchlo 27125   ℋchil 27160   +ℎ cva 27161   ·ℎ csm 27162  normℎcno 27164  Cauchyccau 27167   ⇝𝑣 chli 27168 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-top 20521  df-bases 20522  df-topon 20523  df-ntr 20634  df-nei 20712  df-lm 20843  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-cfil 22861  df-cau 22862  df-cmet 22863  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-cbn 27103  df-hlo 27126  df-hba 27210  df-hvsub 27212  df-hlim 27213  df-hcau 27214 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator