Step | Hyp | Ref
| Expression |
1 | | axgroth3 9532 |
. 2
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
2 | | elequ2 1991 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑣 → (𝑢 ∈ 𝑤 ↔ 𝑢 ∈ 𝑣)) |
3 | 2 | imbi2d 329 |
. . . . . . . . 9
⊢ (𝑤 = 𝑣 → ((𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤) ↔ (𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣))) |
4 | 3 | albidv 1836 |
. . . . . . . 8
⊢ (𝑤 = 𝑣 → (∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤) ↔ ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣))) |
5 | 4 | cbvrexv 3148 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤) ↔ ∃𝑣 ∈ 𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣)) |
6 | 5 | anbi2i 726 |
. . . . . 6
⊢
((∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤)) ↔ (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑣 ∈ 𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣))) |
7 | | r19.42v 3073 |
. . . . . 6
⊢
(∃𝑣 ∈
𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣)) ↔ (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑣 ∈ 𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣))) |
8 | | sseq1 3589 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑤 → (𝑢 ⊆ 𝑧 ↔ 𝑤 ⊆ 𝑧)) |
9 | | elequ1 1984 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑤 → (𝑢 ∈ 𝑣 ↔ 𝑤 ∈ 𝑣)) |
10 | 8, 9 | imbi12d 333 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑤 → ((𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣) ↔ (𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣))) |
11 | 10 | cbvalv 2261 |
. . . . . . . . 9
⊢
(∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣) ↔ ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣)) |
12 | 11 | anbi2i 726 |
. . . . . . . 8
⊢
((∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣)) ↔ (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣))) |
13 | | 19.26 1786 |
. . . . . . . 8
⊢
(∀𝑤((𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ (𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣)) ↔ (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣))) |
14 | | pm4.76 906 |
. . . . . . . . . 10
⊢ (((𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ (𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣)) ↔ (𝑤 ⊆ 𝑧 → (𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣))) |
15 | | elin 3758 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ (𝑦 ∩ 𝑣) ↔ (𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣)) |
16 | 15 | imbi2i 325 |
. . . . . . . . . 10
⊢ ((𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣)) ↔ (𝑤 ⊆ 𝑧 → (𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣))) |
17 | 14, 16 | bitr4i 266 |
. . . . . . . . 9
⊢ (((𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ (𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣)) ↔ (𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣))) |
18 | 17 | albii 1737 |
. . . . . . . 8
⊢
(∀𝑤((𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ (𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑣)) ↔ ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣))) |
19 | 12, 13, 18 | 3bitr2i 287 |
. . . . . . 7
⊢
((∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣)) ↔ ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣))) |
20 | 19 | rexbii 3023 |
. . . . . 6
⊢
(∃𝑣 ∈
𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑣)) ↔ ∃𝑣 ∈ 𝑦 ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣))) |
21 | 6, 7, 20 | 3bitr2i 287 |
. . . . 5
⊢
((∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤)) ↔ ∃𝑣 ∈ 𝑦 ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣))) |
22 | 21 | ralbii 2963 |
. . . 4
⊢
(∀𝑧 ∈
𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤)) ↔ ∀𝑧 ∈ 𝑦 ∃𝑣 ∈ 𝑦 ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣))) |
23 | 22 | 3anbi2i 1247 |
. . 3
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∃𝑣 ∈ 𝑦 ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
24 | 23 | exbii 1764 |
. 2
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑢(𝑢 ⊆ 𝑧 → 𝑢 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∃𝑣 ∈ 𝑦 ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
25 | 1, 24 | mpbi 219 |
1
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∃𝑣 ∈ 𝑦 ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ (𝑦 ∩ 𝑣)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) |