MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth4 Structured version   Unicode version

Theorem axgroth4 8998
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-ac 8627 is used to derive this version. (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
axgroth4  |-  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem axgroth4
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 axgroth3 8997 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) )
2 elequ2 1761 . . . . . . . . . 10  |-  ( w  =  v  ->  (
u  e.  w  <->  u  e.  v ) )
32imbi2d 316 . . . . . . . . 9  |-  ( w  =  v  ->  (
( u  C_  z  ->  u  e.  w )  <-> 
( u  C_  z  ->  u  e.  v ) ) )
43albidv 1679 . . . . . . . 8  |-  ( w  =  v  ->  ( A. u ( u  C_  z  ->  u  e.  w
)  <->  A. u ( u 
C_  z  ->  u  e.  v ) ) )
54cbvrexv 2947 . . . . . . 7  |-  ( E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
)  <->  E. v  e.  y 
A. u ( u 
C_  z  ->  u  e.  v ) )
65anbi2i 694 . . . . . 6  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
) )  <->  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. v  e.  y  A. u
( u  C_  z  ->  u  e.  v ) ) )
7 r19.42v 2874 . . . . . 6  |-  ( E. v  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. v  e.  y  A. u
( u  C_  z  ->  u  e.  v ) ) )
8 sseq1 3376 . . . . . . . . . . 11  |-  ( u  =  w  ->  (
u  C_  z  <->  w  C_  z
) )
9 elequ1 1759 . . . . . . . . . . 11  |-  ( u  =  w  ->  (
u  e.  v  <->  w  e.  v ) )
108, 9imbi12d 320 . . . . . . . . . 10  |-  ( u  =  w  ->  (
( u  C_  z  ->  u  e.  v )  <-> 
( w  C_  z  ->  w  e.  v ) ) )
1110cbvalv 1971 . . . . . . . . 9  |-  ( A. u ( u  C_  z  ->  u  e.  v )  <->  A. w ( w 
C_  z  ->  w  e.  v ) )
1211anbi2i 694 . . . . . . . 8  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  ( A. w ( w  C_  z  ->  w  e.  y )  /\  A. w
( w  C_  z  ->  w  e.  v ) ) )
13 19.26 1647 . . . . . . . 8  |-  ( A. w ( ( w 
C_  z  ->  w  e.  y )  /\  (
w  C_  z  ->  w  e.  v ) )  <-> 
( A. w ( w  C_  z  ->  w  e.  y )  /\  A. w ( w  C_  z  ->  w  e.  v ) ) )
14 pm4.76 861 . . . . . . . . . 10  |-  ( ( ( w  C_  z  ->  w  e.  y )  /\  ( w  C_  z  ->  w  e.  v ) )  <->  ( w  C_  z  ->  ( w  e.  y  /\  w  e.  v ) ) )
15 elin 3538 . . . . . . . . . . 11  |-  ( w  e.  ( y  i^i  v )  <->  ( w  e.  y  /\  w  e.  v ) )
1615imbi2i 312 . . . . . . . . . 10  |-  ( ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  ( w  C_  z  ->  ( w  e.  y  /\  w  e.  v ) ) )
1714, 16bitr4i 252 . . . . . . . . 9  |-  ( ( ( w  C_  z  ->  w  e.  y )  /\  ( w  C_  z  ->  w  e.  v ) )  <->  ( w  C_  z  ->  w  e.  ( y  i^i  v
) ) )
1817albii 1610 . . . . . . . 8  |-  ( A. w ( ( w 
C_  z  ->  w  e.  y )  /\  (
w  C_  z  ->  w  e.  v ) )  <->  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
1912, 13, 183bitr2i 273 . . . . . . 7  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
2019rexbii 2739 . . . . . 6  |-  ( E. v  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
216, 7, 203bitr2i 273 . . . . 5  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
) )  <->  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
2221ralbii 2738 . . . 4  |-  ( A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u
( u  C_  z  ->  u  e.  w ) )  <->  A. z  e.  y  E. v  e.  y 
A. w ( w 
C_  z  ->  w  e.  ( y  i^i  v
) ) )
23223anbi2i 1179 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) ) )
2423exbii 1634 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u
( u  C_  z  ->  u  e.  w ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) ) )
251, 24mpbi 208 1  |-  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965   A.wal 1367   E.wex 1586    e. wcel 1756   A.wral 2714   E.wrex 2715    \ cdif 3324    i^i cin 3326    C_ wss 3327   class class class wbr 4291    ~<_ cdom 7307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-reg 7806  ax-inf2 7846  ax-cc 8603  ax-groth 8989
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-2o 6920  df-oadd 6923  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-oi 7723  df-card 8108  df-cda 8336
This theorem is referenced by:  grothprim  9000
  Copyright terms: Public domain W3C validator