Proof of Theorem axgroth3
Step | Hyp | Ref
| Expression |
1 | | axgroth2 9526 |
. 2
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
2 | | ssid 3587 |
. . . . . . . . . . . 12
⊢ 𝑧 ⊆ 𝑧 |
3 | | sseq1 3589 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑧 → (𝑣 ⊆ 𝑧 ↔ 𝑧 ⊆ 𝑧)) |
4 | | elequ1 1984 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑧 → (𝑣 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
5 | 3, 4 | imbi12d 333 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑧 → ((𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) ↔ (𝑧 ⊆ 𝑧 → 𝑧 ∈ 𝑤))) |
6 | 5 | spv 2248 |
. . . . . . . . . . . 12
⊢
(∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) → (𝑧 ⊆ 𝑧 → 𝑧 ∈ 𝑤)) |
7 | 2, 6 | mpi 20 |
. . . . . . . . . . 11
⊢
(∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) → 𝑧 ∈ 𝑤) |
8 | 7 | reximi 2994 |
. . . . . . . . . 10
⊢
(∃𝑤 ∈
𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) → ∃𝑤 ∈ 𝑦 𝑧 ∈ 𝑤) |
9 | | eluni2 4376 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ∪ 𝑦
↔ ∃𝑤 ∈
𝑦 𝑧 ∈ 𝑤) |
10 | 8, 9 | sylibr 223 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) → 𝑧 ∈ ∪ 𝑦) |
11 | 10 | adantl 481 |
. . . . . . . 8
⊢
((∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) → 𝑧 ∈ ∪ 𝑦) |
12 | 11 | ralimi 2936 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) → ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ 𝑦) |
13 | | dfss3 3558 |
. . . . . . 7
⊢ (𝑦 ⊆ ∪ 𝑦
↔ ∀𝑧 ∈
𝑦 𝑧 ∈ ∪ 𝑦) |
14 | 12, 13 | sylibr 223 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) → 𝑦 ⊆ ∪ 𝑦) |
15 | | ne0i 3880 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑦 → 𝑦 ≠ ∅) |
16 | | vex 3176 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
17 | 16 | dominf 9150 |
. . . . . . . . . . 11
⊢ ((𝑦 ≠ ∅ ∧ 𝑦 ⊆ ∪ 𝑦)
→ ω ≼ 𝑦) |
18 | 15, 17 | sylan 487 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → ω ≼ 𝑦) |
19 | | grothac 9531 |
. . . . . . . . . . . 12
⊢ dom card
= V |
20 | 16, 19 | eleqtrri 2687 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ dom
card |
21 | | vex 3176 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
22 | 21, 19 | eleqtrri 2687 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ dom
card |
23 | | infdif2 8915 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω
≼ 𝑦) → ((𝑦 ∖ 𝑧) ≼ 𝑧 ↔ 𝑦 ≼ 𝑧)) |
24 | 20, 22, 23 | mp3an12 1406 |
. . . . . . . . . 10
⊢ (ω
≼ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ↔ 𝑦 ≼ 𝑧)) |
25 | 18, 24 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → ((𝑦 ∖ 𝑧) ≼ 𝑧 ↔ 𝑦 ≼ 𝑧)) |
26 | 25 | orbi1d 735 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → (((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦) ↔ (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
27 | 26 | imbi2d 329 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → ((𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)) ↔ (𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
28 | 27 | albidv 1836 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → (∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)) ↔ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
29 | 14, 28 | sylan2 490 |
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) → (∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)) ↔ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
30 | 29 | pm5.32i 667 |
. . . 4
⊢ (((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
31 | | df-3an 1033 |
. . . 4
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
32 | | df-3an 1033 |
. . . 4
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
33 | 30, 31, 32 | 3bitr4i 291 |
. . 3
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
34 | 33 | exbii 1764 |
. 2
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
35 | 1, 34 | mpbir 220 |
1
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) |