Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grothprimlem | Structured version Visualization version GIF version |
Description: Lemma for grothprim 9535. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.) |
Ref | Expression |
---|---|
grothprimlem | ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 4143 | . . 3 ⊢ {𝑢, 𝑣} = {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} | |
2 | 1 | eleq1i 2679 | . 2 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤) |
3 | clabel 2736 | . 2 ⊢ ({ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) | |
4 | 2, 3 | bitri 263 | 1 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∨ wo 382 ∧ wa 383 ∀wal 1473 ∃wex 1695 ∈ wcel 1977 {cab 2596 {cpr 4127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-un 3545 df-sn 4126 df-pr 4128 |
This theorem is referenced by: grothprim 9535 |
Copyright terms: Public domain | W3C validator |