Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axcontlem6 | Structured version Visualization version GIF version |
Description: Lemma for axcont 25656. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.) |
Ref | Expression |
---|---|
axcontlem5.1 | ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
axcontlem5.2 | ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
Ref | Expression |
---|---|
axcontlem6 | ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . 3 ⊢ (𝐹‘𝑃) = (𝐹‘𝑃) | |
2 | axcontlem5.1 | . . . 4 ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} | |
3 | axcontlem5.2 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} | |
4 | 3 | axcontlem1 25644 | . . . 4 ⊢ 𝐹 = {〈𝑦, 𝑠〉 ∣ (𝑦 ∈ 𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦‘𝑗) = (((1 − 𝑠) · (𝑍‘𝑗)) + (𝑠 · (𝑈‘𝑗)))))} |
5 | 2, 4 | axcontlem5 25648 | . . 3 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) = (𝐹‘𝑃) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))))) |
6 | 1, 5 | mpbii 222 | . 2 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))))) |
7 | fveq2 6103 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑃‘𝑗) = (𝑃‘𝑖)) | |
8 | fveq2 6103 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑍‘𝑗) = (𝑍‘𝑖)) | |
9 | 8 | oveq2d 6565 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) = ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) |
10 | fveq2 6103 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑈‘𝑗) = (𝑈‘𝑖)) | |
11 | 10 | oveq2d 6565 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((𝐹‘𝑃) · (𝑈‘𝑗)) = ((𝐹‘𝑃) · (𝑈‘𝑖))) |
12 | 9, 11 | oveq12d 6567 | . . . . 5 ⊢ (𝑗 = 𝑖 → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
13 | 7, 12 | eqeq12d 2625 | . . . 4 ⊢ (𝑗 = 𝑖 → ((𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ (𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
14 | 13 | cbvralv 3147 | . . 3 ⊢ (∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
15 | 14 | anbi2i 726 | . 2 ⊢ (((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
16 | 6, 15 | sylib 207 | 1 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 {crab 2900 〈cop 4131 class class class wbr 4583 {copab 4642 ‘cfv 5804 (class class class)co 6549 0cc0 9815 1c1 9816 + caddc 9818 · cmul 9820 +∞cpnf 9950 − cmin 10145 ℕcn 10897 [,)cico 12048 ...cfz 12197 𝔼cee 25568 Btwn cbtwn 25569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-z 11255 df-uz 11564 df-ico 12052 df-icc 12053 df-fz 12198 df-ee 25571 df-btwn 25572 |
This theorem is referenced by: axcontlem7 25650 axcontlem8 25651 |
Copyright terms: Public domain | W3C validator |