Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem6 Structured version   Visualization version   GIF version

Theorem axcontlem6 25649
 Description: Lemma for axcont 25656. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem5.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem6 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
Distinct variable groups:   𝑡,𝐷,𝑥   𝑖,𝑝,𝑡,𝑥,𝑁   𝑃,𝑖,𝑡,𝑥   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑍,𝑝,𝑡,𝑥   𝑖,𝐹
Allowed substitution hints:   𝐷(𝑖,𝑝)   𝑃(𝑝)   𝐹(𝑥,𝑡,𝑝)

Proof of Theorem axcontlem6
Dummy variables 𝑠 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (𝐹𝑃) = (𝐹𝑃)
2 axcontlem5.1 . . . 4 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
3 axcontlem5.2 . . . . 5 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
43axcontlem1 25644 . . . 4 𝐹 = {⟨𝑦, 𝑠⟩ ∣ (𝑦𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))}
52, 4axcontlem5 25648 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = (𝐹𝑃) ↔ ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))))))
61, 5mpbii 222 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗)))))
7 fveq2 6103 . . . . 5 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
8 fveq2 6103 . . . . . . 7 (𝑗 = 𝑖 → (𝑍𝑗) = (𝑍𝑖))
98oveq2d 6565 . . . . . 6 (𝑗 = 𝑖 → ((1 − (𝐹𝑃)) · (𝑍𝑗)) = ((1 − (𝐹𝑃)) · (𝑍𝑖)))
10 fveq2 6103 . . . . . . 7 (𝑗 = 𝑖 → (𝑈𝑗) = (𝑈𝑖))
1110oveq2d 6565 . . . . . 6 (𝑗 = 𝑖 → ((𝐹𝑃) · (𝑈𝑗)) = ((𝐹𝑃) · (𝑈𝑖)))
129, 11oveq12d 6567 . . . . 5 (𝑗 = 𝑖 → (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))))
137, 12eqeq12d 2625 . . . 4 (𝑗 = 𝑖 → ((𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) ↔ (𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
1413cbvralv 3147 . . 3 (∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))))
1514anbi2i 726 . 2 (((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗)))) ↔ ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
166, 15sylib 207 1 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900  ⟨cop 4131   class class class wbr 4583  {copab 4642  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950   − cmin 10145  ℕcn 10897  [,)cico 12048  ...cfz 12197  𝔼cee 25568   Btwn cbtwn 25569 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-z 11255  df-uz 11564  df-ico 12052  df-icc 12053  df-fz 12198  df-ee 25571  df-btwn 25572 This theorem is referenced by:  axcontlem7  25650  axcontlem8  25651
 Copyright terms: Public domain W3C validator