Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwlk2lem2f1o Structured version   Visualization version   GIF version

Theorem av-numclwlk2lem2f1o 41535
Description: R is a 1-1 onto function. (Contributed by Alexander van der Vekens, 6-Oct-2018.)
Hypotheses
Ref Expression
av-numclwwlk.v 𝑉 = (Vtx‘𝐺)
av-numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
av-numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
av-numclwwlk.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
Assertion
Ref Expression
av-numclwlk2lem2f1o ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋,𝑣   𝑣,𝐻
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑛)

Proof of Theorem av-numclwlk2lem2f1o
Dummy variables 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))))
2 fveq2 6103 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑅𝑦) = (𝑅𝑥))
3 oveq1 6556 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 substr ⟨0, (𝑁 + 1)⟩) = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
42, 3eqeq12d 2625 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩) ↔ (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
51, 4imbi12d 333 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩)) ↔ (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
65imbi2d 329 . . . . . . 7 (𝑦 = 𝑥 → (((𝑋𝑉𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩))) ↔ ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))))
7 av-numclwwlk.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
8 av-numclwwlk.q . . . . . . . 8 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
9 av-numclwwlk.f . . . . . . . 8 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
10 av-numclwwlk.h . . . . . . . 8 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
11 av-numclwwlk.r . . . . . . . 8 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
127, 8, 9, 10, 11av-numclwlk2lem2fv 41534 . . . . . . 7 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑦 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑦) = (𝑦 substr ⟨0, (𝑁 + 1)⟩)))
136, 12chvarv 2251 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
14133adant1 1072 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
1514imp 444 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅𝑥) = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
167, 8, 9, 10, 11av-numclwlk2lem2f 41533 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
1716ffvelrnda 6267 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑅𝑥) ∈ (𝑋𝑄𝑁))
1815, 17eqeltrrd 2689 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
1918ralrimiva 2949 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
207, 8, 9, 10av-numclwwlk2lem1 41532 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
2120imp 444 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)))
227, 8av-numclwwlkovq 41529 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
2322eleq2d 2673 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}))
24233adant1 1072 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ 𝑢 ∈ {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}))
25 fveq1 6102 . . . . . . . . . 10 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
2625eqeq1d 2612 . . . . . . . . 9 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑋 ↔ (𝑢‘0) = 𝑋))
27 fveq2 6103 . . . . . . . . . 10 (𝑤 = 𝑢 → ( lastS ‘𝑤) = ( lastS ‘𝑢))
2827neeq1d 2841 . . . . . . . . 9 (𝑤 = 𝑢 → (( lastS ‘𝑤) ≠ 𝑋 ↔ ( lastS ‘𝑢) ≠ 𝑋))
2926, 28anbi12d 743 . . . . . . . 8 (𝑤 = 𝑢 → (((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋) ↔ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)))
3029elrab 3331 . . . . . . 7 (𝑢 ∈ {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} ↔ (𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)))
3124, 30syl6bb 275 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) ↔ (𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋))))
32 wwlknbp2 41063 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝑁 WWalkSN 𝐺) → (𝑢 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑢) = (𝑁 + 1)))
337wrdeqi 13183 . . . . . . . . . . . . . . . . 17 Word 𝑉 = Word (Vtx‘𝐺)
3433eleq2i 2680 . . . . . . . . . . . . . . . 16 (𝑢 ∈ Word 𝑉𝑢 ∈ Word (Vtx‘𝐺))
3534anbi1i 727 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ↔ (𝑢 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑢) = (𝑁 + 1)))
3632, 35sylibr 223 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝑁 WWalkSN 𝐺) → (𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)))
37 simpll 786 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → 𝑢 ∈ Word 𝑉)
38 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
39 2nn 11062 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℕ
4039a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 2 ∈ ℕ)
4138, 40nnaddcld 10944 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
427, 8, 9, 10av-numclwwlkovh 41531 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
4341, 42sylan2 490 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
4443eleq2d 2673 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
45 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
4645eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
47 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
4847, 45neeq12d 2843 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
4946, 48anbi12d 743 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
5049elrab 3331 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
5144, 50syl6bb 275 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
52513adant1 1072 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
5352adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
547clwwlknbp 41193 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2)))
55 lencl 13179 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ Word 𝑉 → (#‘𝑢) ∈ ℕ0)
56 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
57 df-2 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 = (1 + 1)
5857a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ → 2 = (1 + 1))
5958oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℕ → (𝑁 + 2) = (𝑁 + (1 + 1)))
60 nncn 10905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
61 1cnd 9935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ → 1 ∈ ℂ)
6260, 61, 61addassd 9941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
6359, 62eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → (𝑁 + 2) = ((𝑁 + 1) + 1))
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 2) = ((𝑁 + 1) + 1))
6564eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → ((#‘𝑥) = (𝑁 + 2) ↔ (#‘𝑥) = ((𝑁 + 1) + 1)))
6665biimpcd 238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((#‘𝑥) = (𝑁 + 2) → ((((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (#‘𝑥) = ((𝑁 + 1) + 1)))
6766adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (#‘𝑥) = ((𝑁 + 1) + 1)))
6867impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (#‘𝑥) = ((𝑁 + 1) + 1))
69 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((#‘𝑢) = (𝑁 + 1) → ((#‘𝑢) + 1) = ((𝑁 + 1) + 1))
7069ad3antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((#‘𝑢) + 1) = ((𝑁 + 1) + 1))
7168, 70eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (#‘𝑥) = ((#‘𝑢) + 1))
7256, 71jca 553 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1)))
7372exp31 628 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#‘𝑢) ∈ ℕ0 ∧ (#‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1)))))
7455, 73sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1)))))
7574com12 32 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1)))))
76753ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1)))))
7776impcom 445 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))))
7877com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))))
7978ancoms 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2)) → (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))))
8054, 79syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) → (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))))
8180adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))))
8281com12 32 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))))
8353, 82sylbid 229 . . . . . . . . . . . . . . . . 17 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))))
8483ralrimiv 2948 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1)))
8537, 84jca 553 . . . . . . . . . . . . . . 15 (((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))))
8685ex 449 . . . . . . . . . . . . . 14 ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1)))))
8736, 86syl 17 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑁 WWalkSN 𝐺) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1)))))
8887adantr 480 . . . . . . . . . . . 12 ((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1)))))
8988imp 444 . . . . . . . . . . 11 (((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))))
90 reuccats1 13332 . . . . . . . . . . 11 ((𝑢 ∈ Word 𝑉 ∧ ∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑢) + 1))) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (#‘𝑢)⟩)))
9189, 90syl 17 . . . . . . . . . 10 (((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (#‘𝑢)⟩)))
9291imp 444 . . . . . . . . 9 ((((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (#‘𝑢)⟩))
93 simpr 476 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) → (#‘𝑢) = (𝑁 + 1))
9493eqcomd 2616 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝑉 ∧ (#‘𝑢) = (𝑁 + 1)) → (𝑁 + 1) = (#‘𝑢))
9536, 94syl 17 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝑁 WWalkSN 𝐺) → (𝑁 + 1) = (#‘𝑢))
9695ad4antr 764 . . . . . . . . . . . . 13 (((((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑁 + 1) = (#‘𝑢))
9796opeq2d 4347 . . . . . . . . . . . 12 (((((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ⟨0, (𝑁 + 1)⟩ = ⟨0, (#‘𝑢)⟩)
9897oveq2d 6565 . . . . . . . . . . 11 (((((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) = (𝑥 substr ⟨0, (#‘𝑢)⟩))
9998eqeq2d 2620 . . . . . . . . . 10 (((((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) ↔ 𝑢 = (𝑥 substr ⟨0, (#‘𝑢)⟩)))
10099reubidva 3102 . . . . . . . . 9 ((((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) → (∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) ↔ ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (#‘𝑢)⟩)))
10192, 100mpbird 246 . . . . . . . 8 ((((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) ∧ (𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ)) ∧ ∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
102101exp31 628 . . . . . . 7 ((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) → ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
103102com12 32 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑢 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑢‘0) = 𝑋 ∧ ( lastS ‘𝑢) ≠ 𝑋)) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
10431, 103sylbid 229 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑢 ∈ (𝑋𝑄𝑁) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))))
105104imp 444 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → (∃!𝑣𝑉 (𝑢 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
10621, 105mpd 15 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑢 ∈ (𝑋𝑄𝑁)) → ∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
107106ralrimiva 2949 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩))
10811f1ompt 6290 . 2 (𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁) ↔ (∀𝑥 ∈ (𝑋𝐻(𝑁 + 2))(𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ∧ ∀𝑢 ∈ (𝑋𝑄𝑁)∃!𝑥 ∈ (𝑋𝐻(𝑁 + 2))𝑢 = (𝑥 substr ⟨0, (𝑁 + 1)⟩)))
10919, 107, 108sylanbrc 695 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  ∃!wreu 2898  {crab 2900  cop 4131  cmpt 4643  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  0cc0 9815  1c1 9816   + caddc 9818  cmin 10145  cn 10897  2c2 10947  0cn0 11169  #chash 12979  Word cword 13146   lastS clsw 13147   ++ cconcat 13148  ⟨“cs1 13149   substr csubstr 13150  Vtxcvtx 25673   WWalkSN cwwlksn 41029   ClWWalkSN cclwwlksn 41184   FriendGraph cfrgr 41428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-wwlks 41033  df-wwlksn 41034  df-clwwlks 41185  df-clwwlksn 41186  df-frgr 41429
This theorem is referenced by:  av-numclwwlk2lem3  41536
  Copyright terms: Public domain W3C validator