Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem3 Structured version   Visualization version   GIF version

Theorem aomclem3 36644
 Description: Lemma for dfac11 36650. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
aomclem3.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem3.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem3.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem3.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem3.on (𝜑 → dom 𝑧 ∈ On)
aomclem3.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem3.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem3.a (𝜑𝐴 ∈ On)
aomclem3.za (𝜑 → dom 𝑧𝐴)
aomclem3.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem3 (𝜑𝐸 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem3
StepHypRef Expression
1 aomclem3.d . . 3 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
2 rneq 5272 . . . . . . 7 (𝑎 = 𝑐 → ran 𝑎 = ran 𝑐)
32difeq2d 3690 . . . . . 6 (𝑎 = 𝑐 → ((𝑅1‘dom 𝑧) ∖ ran 𝑎) = ((𝑅1‘dom 𝑧) ∖ ran 𝑐))
43fveq2d 6107 . . . . 5 (𝑎 = 𝑐 → (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)) = (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))
54cbvmptv 4678 . . . 4 (𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))
6 recseq 7357 . . . 4 ((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))) = (𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))) → recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐)))))
75, 6ax-mp 5 . . 3 recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))))
81, 7eqtri 2632 . 2 𝐷 = recs((𝑐 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑐))))
9 fvex 6113 . . 3 (𝑅1‘dom 𝑧) ∈ V
109a1i 11 . 2 (𝜑 → (𝑅1‘dom 𝑧) ∈ V)
11 aomclem3.b . . . 4 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
12 aomclem3.c . . . 4 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
13 aomclem3.on . . . 4 (𝜑 → dom 𝑧 ∈ On)
14 aomclem3.su . . . 4 (𝜑 → dom 𝑧 = suc dom 𝑧)
15 aomclem3.we . . . 4 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
16 aomclem3.a . . . 4 (𝜑𝐴 ∈ On)
17 aomclem3.za . . . 4 (𝜑 → dom 𝑧𝐴)
18 aomclem3.y . . . 4 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
1911, 12, 13, 14, 15, 16, 17, 18aomclem2 36643 . . 3 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
20 neeq1 2844 . . . . 5 (𝑎 = 𝑑 → (𝑎 ≠ ∅ ↔ 𝑑 ≠ ∅))
21 fveq2 6103 . . . . . 6 (𝑎 = 𝑑 → (𝐶𝑎) = (𝐶𝑑))
22 id 22 . . . . . 6 (𝑎 = 𝑑𝑎 = 𝑑)
2321, 22eleq12d 2682 . . . . 5 (𝑎 = 𝑑 → ((𝐶𝑎) ∈ 𝑎 ↔ (𝐶𝑑) ∈ 𝑑))
2420, 23imbi12d 333 . . . 4 (𝑎 = 𝑑 → ((𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎) ↔ (𝑑 ≠ ∅ → (𝐶𝑑) ∈ 𝑑)))
2524cbvralv 3147 . . 3 (∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎) ↔ ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶𝑑) ∈ 𝑑))
2619, 25sylib 207 . 2 (𝜑 → ∀𝑑 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑑 ≠ ∅ → (𝐶𝑑) ∈ 𝑑))
27 aomclem3.e . 2 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
288, 10, 26, 27dnwech 36636 1 (𝜑𝐸 We (𝑅1‘dom 𝑧))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125  ∪ cuni 4372  ∩ cint 4410   class class class wbr 4583  {copab 4642   ↦ cmpt 4643   We wwe 4996  ◡ccnv 5037  dom cdm 5038  ran crn 5039   “ cima 5041  Oncon0 5640  suc csuc 5642  ‘cfv 5804  recscrecs 7354  Fincfn 7841  supcsup 8229  𝑅1cr1 8508 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-er 7629  df-map 7746  df-en 7842  df-fin 7845  df-sup 8231  df-r1 8510 This theorem is referenced by:  aomclem5  36646
 Copyright terms: Public domain W3C validator