Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem4 Structured version   Visualization version   GIF version

Theorem aomclem4 36645
Description: Lemma for dfac11 36650. Limit case. Patch together well-orderings constructed so far using fnwe2 36641 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem4.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem4.on (𝜑 → dom 𝑧 ∈ On)
aomclem4.su (𝜑 → dom 𝑧 = dom 𝑧)
aomclem4.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
Assertion
Ref Expression
aomclem4 (𝜑𝐹 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑧,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑧)   𝐹(𝑧,𝑎,𝑏)

Proof of Theorem aomclem4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 suceq 5707 . . 3 (𝑐 = (rank‘𝑎) → suc 𝑐 = suc (rank‘𝑎))
21fveq2d 6107 . 2 (𝑐 = (rank‘𝑎) → (𝑧‘suc 𝑐) = (𝑧‘suc (rank‘𝑎)))
3 aomclem4.f . 2 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
4 r1fnon 8513 . . . . . . . . . . . . . 14 𝑅1 Fn On
5 fnfun 5902 . . . . . . . . . . . . . 14 (𝑅1 Fn On → Fun 𝑅1)
64, 5ax-mp 5 . . . . . . . . . . . . 13 Fun 𝑅1
7 fndm 5904 . . . . . . . . . . . . . . 15 (𝑅1 Fn On → dom 𝑅1 = On)
84, 7ax-mp 5 . . . . . . . . . . . . . 14 dom 𝑅1 = On
98eqimss2i 3623 . . . . . . . . . . . . 13 On ⊆ dom 𝑅1
106, 9pm3.2i 470 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ On ⊆ dom 𝑅1)
11 aomclem4.on . . . . . . . . . . . 12 (𝜑 → dom 𝑧 ∈ On)
12 funfvima2 6397 . . . . . . . . . . . 12 ((Fun 𝑅1 ∧ On ⊆ dom 𝑅1) → (dom 𝑧 ∈ On → (𝑅1‘dom 𝑧) ∈ (𝑅1 “ On)))
1310, 11, 12mpsyl 66 . . . . . . . . . . 11 (𝜑 → (𝑅1‘dom 𝑧) ∈ (𝑅1 “ On))
14 elssuni 4403 . . . . . . . . . . 11 ((𝑅1‘dom 𝑧) ∈ (𝑅1 “ On) → (𝑅1‘dom 𝑧) ⊆ (𝑅1 “ On))
1513, 14syl 17 . . . . . . . . . 10 (𝜑 → (𝑅1‘dom 𝑧) ⊆ (𝑅1 “ On))
1615sselda 3568 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → 𝑏 (𝑅1 “ On))
17 rankidb 8546 . . . . . . . . 9 (𝑏 (𝑅1 “ On) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑏)))
1816, 17syl 17 . . . . . . . 8 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑏)))
19 suceq 5707 . . . . . . . . . 10 ((rank‘𝑏) = (rank‘𝑎) → suc (rank‘𝑏) = suc (rank‘𝑎))
2019fveq2d 6107 . . . . . . . . 9 ((rank‘𝑏) = (rank‘𝑎) → (𝑅1‘suc (rank‘𝑏)) = (𝑅1‘suc (rank‘𝑎)))
2120eleq2d 2673 . . . . . . . 8 ((rank‘𝑏) = (rank‘𝑎) → (𝑏 ∈ (𝑅1‘suc (rank‘𝑏)) ↔ 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2218, 21syl5ibcom 234 . . . . . . 7 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → ((rank‘𝑏) = (rank‘𝑎) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2322expimpd 627 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎)) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2423ss2abdv 3638 . . . . 5 (𝜑 → {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))} ⊆ {𝑏𝑏 ∈ (𝑅1‘suc (rank‘𝑎))})
25 df-rab 2905 . . . . 5 {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} = {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))}
26 abid1 2731 . . . . 5 (𝑅1‘suc (rank‘𝑎)) = {𝑏𝑏 ∈ (𝑅1‘suc (rank‘𝑎))}
2724, 25, 263sstr4g 3609 . . . 4 (𝜑 → {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)))
2827adantr 480 . . 3 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)))
29 rankr1ai 8544 . . . . . 6 (𝑎 ∈ (𝑅1‘dom 𝑧) → (rank‘𝑎) ∈ dom 𝑧)
3029adantl 481 . . . . 5 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (rank‘𝑎) ∈ dom 𝑧)
31 eloni 5650 . . . . . . . 8 (dom 𝑧 ∈ On → Ord dom 𝑧)
3211, 31syl 17 . . . . . . 7 (𝜑 → Ord dom 𝑧)
33 aomclem4.su . . . . . . 7 (𝜑 → dom 𝑧 = dom 𝑧)
34 limsuc2 36629 . . . . . . 7 ((Ord dom 𝑧 ∧ dom 𝑧 = dom 𝑧) → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
3532, 33, 34syl2anc 691 . . . . . 6 (𝜑 → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
3635adantr 480 . . . . 5 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
3730, 36mpbid 221 . . . 4 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → suc (rank‘𝑎) ∈ dom 𝑧)
38 aomclem4.we . . . . . 6 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
39 fveq2 6103 . . . . . . . 8 (𝑎 = 𝑏 → (𝑧𝑎) = (𝑧𝑏))
40 fveq2 6103 . . . . . . . 8 (𝑎 = 𝑏 → (𝑅1𝑎) = (𝑅1𝑏))
4139, 40weeq12d 36628 . . . . . . 7 (𝑎 = 𝑏 → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝑧𝑏) We (𝑅1𝑏)))
4241cbvralv 3147 . . . . . 6 (∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎) ↔ ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
4338, 42sylib 207 . . . . 5 (𝜑 → ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
4443adantr 480 . . . 4 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
45 fveq2 6103 . . . . . 6 (𝑏 = suc (rank‘𝑎) → (𝑧𝑏) = (𝑧‘suc (rank‘𝑎)))
46 fveq2 6103 . . . . . 6 (𝑏 = suc (rank‘𝑎) → (𝑅1𝑏) = (𝑅1‘suc (rank‘𝑎)))
4745, 46weeq12d 36628 . . . . 5 (𝑏 = suc (rank‘𝑎) → ((𝑧𝑏) We (𝑅1𝑏) ↔ (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎))))
4847rspcva 3280 . . . 4 ((suc (rank‘𝑎) ∈ dom 𝑧 ∧ ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏)) → (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)))
4937, 44, 48syl2anc 691 . . 3 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)))
50 wess 5025 . . 3 ({𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)) → ((𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)}))
5128, 49, 50sylc 63 . 2 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)})
52 rankf 8540 . . . 4 rank: (𝑅1 “ On)⟶On
5352a1i 11 . . 3 (𝜑 → rank: (𝑅1 “ On)⟶On)
5453, 15fssresd 5984 . 2 (𝜑 → (rank ↾ (𝑅1‘dom 𝑧)):(𝑅1‘dom 𝑧)⟶On)
55 epweon 6875 . . 3 E We On
5655a1i 11 . 2 (𝜑 → E We On)
572, 3, 51, 54, 56fnwe2 36641 1 (𝜑𝐹 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  {crab 2900  wss 3540   cuni 4372   class class class wbr 4583  {copab 4642   E cep 4947   We wwe 4996  dom cdm 5038  cima 5041  Ord word 5639  Oncon0 5640  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  𝑅1cr1 8508  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  aomclem5  36646
  Copyright terms: Public domain W3C validator