Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem3 Structured version   Unicode version

Theorem aomclem3 30930
Description: Lemma for dfac11 30936. Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
aomclem3.b  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
aomclem3.c  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
aomclem3.d  |-  D  = recs ( ( a  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  a ) ) ) )
aomclem3.e  |-  E  =  { <. a ,  b
>.  |  |^| ( `' D " { a } )  e.  |^| ( `' D " { b } ) }
aomclem3.on  |-  ( ph  ->  dom  z  e.  On )
aomclem3.su  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
aomclem3.we  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
aomclem3.a  |-  ( ph  ->  A  e.  On )
aomclem3.za  |-  ( ph  ->  dom  z  C_  A
)
aomclem3.y  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
Assertion
Ref Expression
aomclem3  |-  ( ph  ->  E  We  ( R1
`  dom  z )
)
Distinct variable groups:    y, z,
a, b, c, d    ph, a, b    C, a, b, c, d    D, a, b, c, d
Allowed substitution hints:    ph( y, z, c, d)    A( y, z, a, b, c, d)    B( y, z, a, b, c, d)    C( y, z)    D( y, z)    E( y, z, a, b, c, d)

Proof of Theorem aomclem3
StepHypRef Expression
1 aomclem3.d . . 3  |-  D  = recs ( ( a  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  a ) ) ) )
2 rneq 5234 . . . . . . 7  |-  ( a  =  c  ->  ran  a  =  ran  c )
32difeq2d 3627 . . . . . 6  |-  ( a  =  c  ->  (
( R1 `  dom  z )  \  ran  a )  =  ( ( R1 `  dom  z )  \  ran  c ) )
43fveq2d 5876 . . . . 5  |-  ( a  =  c  ->  ( C `  ( ( R1 `  dom  z ) 
\  ran  a )
)  =  ( C `
 ( ( R1
`  dom  z )  \  ran  c ) ) )
54cbvmptv 4544 . . . 4  |-  ( a  e.  _V  |->  ( C `
 ( ( R1
`  dom  z )  \  ran  a ) ) )  =  ( c  e.  _V  |->  ( C `
 ( ( R1
`  dom  z )  \  ran  c ) ) )
6 recseq 7055 . . . 4  |-  ( ( a  e.  _V  |->  ( C `  ( ( R1 `  dom  z
)  \  ran  a ) ) )  =  ( c  e.  _V  |->  ( C `  ( ( R1 `  dom  z
)  \  ran  c ) ) )  -> recs ( ( a  e.  _V  |->  ( C `  ( ( R1 `  dom  z
)  \  ran  a ) ) ) )  = recs ( ( c  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  c ) ) ) ) )
75, 6ax-mp 5 . . 3  |- recs ( ( a  e.  _V  |->  ( C `  ( ( R1 `  dom  z
)  \  ran  a ) ) ) )  = recs ( ( c  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  c ) ) ) )
81, 7eqtri 2496 . 2  |-  D  = recs ( ( c  e. 
_V  |->  ( C `  ( ( R1 `  dom  z )  \  ran  c ) ) ) )
9 fvex 5882 . . 3  |-  ( R1
`  dom  z )  e.  _V
109a1i 11 . 2  |-  ( ph  ->  ( R1 `  dom  z )  e.  _V )
11 aomclem3.b . . . 4  |-  B  =  { <. a ,  b
>.  |  E. c  e.  ( R1 `  U. dom  z ) ( ( c  e.  b  /\  -.  c  e.  a
)  /\  A. d  e.  ( R1 `  U. dom  z ) ( d ( z `  U. dom  z ) c  -> 
( d  e.  a  <-> 
d  e.  b ) ) ) }
12 aomclem3.c . . . 4  |-  C  =  ( a  e.  _V  |->  sup ( ( y `  a ) ,  ( R1 `  dom  z
) ,  B ) )
13 aomclem3.on . . . 4  |-  ( ph  ->  dom  z  e.  On )
14 aomclem3.su . . . 4  |-  ( ph  ->  dom  z  =  suc  U.
dom  z )
15 aomclem3.we . . . 4  |-  ( ph  ->  A. a  e.  dom  z ( z `  a )  We  ( R1 `  a ) )
16 aomclem3.a . . . 4  |-  ( ph  ->  A  e.  On )
17 aomclem3.za . . . 4  |-  ( ph  ->  dom  z  C_  A
)
18 aomclem3.y . . . 4  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  A ) ( a  =/=  (/)  ->  (
y `  a )  e.  ( ( ~P a  i^i  Fin )  \  { (/)
} ) ) )
1911, 12, 13, 14, 15, 16, 17, 18aomclem2 30929 . . 3  |-  ( ph  ->  A. a  e.  ~P  ( R1 `  dom  z
) ( a  =/=  (/)  ->  ( C `  a )  e.  a ) )
20 neeq1 2748 . . . . 5  |-  ( a  =  d  ->  (
a  =/=  (/)  <->  d  =/=  (/) ) )
21 fveq2 5872 . . . . . 6  |-  ( a  =  d  ->  ( C `  a )  =  ( C `  d ) )
22 id 22 . . . . . 6  |-  ( a  =  d  ->  a  =  d )
2321, 22eleq12d 2549 . . . . 5  |-  ( a  =  d  ->  (
( C `  a
)  e.  a  <->  ( C `  d )  e.  d ) )
2420, 23imbi12d 320 . . . 4  |-  ( a  =  d  ->  (
( a  =/=  (/)  ->  ( C `  a )  e.  a )  <->  ( d  =/=  (/)  ->  ( C `  d )  e.  d ) ) )
2524cbvralv 3093 . . 3  |-  ( A. a  e.  ~P  ( R1 `  dom  z ) ( a  =/=  (/)  ->  ( C `  a )  e.  a )  <->  A. d  e.  ~P  ( R1 `  dom  z ) ( d  =/=  (/)  ->  ( C `  d )  e.  d ) )
2619, 25sylib 196 . 2  |-  ( ph  ->  A. d  e.  ~P  ( R1 `  dom  z
) ( d  =/=  (/)  ->  ( C `  d )  e.  d ) )
27 aomclem3.e . 2  |-  E  =  { <. a ,  b
>.  |  |^| ( `' D " { a } )  e.  |^| ( `' D " { b } ) }
288, 10, 26, 27dnwech 30922 1  |-  ( ph  ->  E  We  ( R1
`  dom  z )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818   _Vcvv 3118    \ cdif 3478    i^i cin 3480    C_ wss 3481   (/)c0 3790   ~Pcpw 4016   {csn 4033   U.cuni 4251   |^|cint 4288   class class class wbr 4453   {copab 4510    |-> cmpt 4511    We wwe 4843   Oncon0 4884   suc csuc 4886   `'ccnv 5004   dom cdm 5005   ran crn 5006   "cima 5008   ` cfv 5594  recscrecs 7053   Fincfn 7528   supcsup 7912   R1cr1 8192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-er 7323  df-map 7434  df-en 7529  df-fin 7532  df-sup 7913  df-r1 8194
This theorem is referenced by:  aomclem5  30932
  Copyright terms: Public domain W3C validator