Proof of Theorem aomclem2
Step | Hyp | Ref
| Expression |
1 | | vex 3176 |
. . . . 5
⊢ 𝑎 ∈ V |
2 | | aomclem2.y |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈ 𝒫
(𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅}))) |
3 | | aomclem2.on |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝑧 ∈ On) |
4 | | aomclem2.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ On) |
5 | 3, 4 | jca 553 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (dom 𝑧 ∈ On ∧ 𝐴 ∈ On)) |
6 | | aomclem2.za |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) |
7 | | r1ord3 8528 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑧 ∈ On ∧ 𝐴 ∈ On) → (dom 𝑧 ⊆ 𝐴 → (𝑅1‘dom
𝑧) ⊆
(𝑅1‘𝐴))) |
8 | 5, 6, 7 | sylc 63 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(𝑅1‘dom 𝑧) ⊆ (𝑅1‘𝐴)) |
9 | | sspwb 4844 |
. . . . . . . . . . . 12
⊢
((𝑅1‘dom 𝑧) ⊆ (𝑅1‘𝐴) ↔ 𝒫
(𝑅1‘dom 𝑧) ⊆ 𝒫
(𝑅1‘𝐴)) |
10 | 8, 9 | sylib 207 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝒫
(𝑅1‘dom 𝑧) ⊆ 𝒫
(𝑅1‘𝐴)) |
11 | 10 | sseld 3567 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) → 𝑎 ∈ 𝒫
(𝑅1‘𝐴))) |
12 | | rsp 2913 |
. . . . . . . . . 10
⊢
(∀𝑎 ∈
𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) → (𝑎 ∈ 𝒫
(𝑅1‘𝐴) → (𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅})))) |
13 | 2, 11, 12 | sylsyld 59 |
. . . . . . . . 9
⊢ (𝜑 → (𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅})))) |
14 | 13 | 3imp 1249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅})) |
15 | 14 | eldifad 3552 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ∈ (𝒫 𝑎 ∩ Fin)) |
16 | | inss1 3795 |
. . . . . . . . 9
⊢
(𝒫 𝑎 ∩
Fin) ⊆ 𝒫 𝑎 |
17 | 16 | sseli 3564 |
. . . . . . . 8
⊢ ((𝑦‘𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦‘𝑎) ∈ 𝒫 𝑎) |
18 | 17 | elpwid 4118 |
. . . . . . 7
⊢ ((𝑦‘𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦‘𝑎) ⊆ 𝑎) |
19 | 15, 18 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ⊆ 𝑎) |
20 | | aomclem2.b |
. . . . . . . . 9
⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
21 | | aomclem2.su |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) |
22 | | aomclem2.we |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
23 | 20, 3, 21, 22 | aomclem1 36642 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 Or (𝑅1‘dom 𝑧)) |
24 | 23 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝐵 Or (𝑅1‘dom 𝑧)) |
25 | | inss2 3796 |
. . . . . . . 8
⊢
(𝒫 𝑎 ∩
Fin) ⊆ Fin |
26 | 25, 15 | sseldi 3566 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ∈ Fin) |
27 | | eldifsni 4261 |
. . . . . . . 8
⊢ ((𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) → (𝑦‘𝑎) ≠ ∅) |
28 | 14, 27 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ≠ ∅) |
29 | | elpwi 4117 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) → 𝑎 ⊆ (𝑅1‘dom
𝑧)) |
30 | 29 | 3ad2ant2 1076 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (𝑅1‘dom
𝑧)) |
31 | 19, 30 | sstrd 3578 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ⊆ (𝑅1‘dom
𝑧)) |
32 | | fisupcl 8258 |
. . . . . . 7
⊢ ((𝐵 Or
(𝑅1‘dom 𝑧) ∧ ((𝑦‘𝑎) ∈ Fin ∧ (𝑦‘𝑎) ≠ ∅ ∧ (𝑦‘𝑎) ⊆ (𝑅1‘dom
𝑧))) → sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦‘𝑎)) |
33 | 24, 26, 28, 31, 32 | syl13anc 1320 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦‘𝑎)) |
34 | 19, 33 | sseldd 3569 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎) |
35 | | aomclem2.c |
. . . . . 6
⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
36 | 35 | fvmpt2 6200 |
. . . . 5
⊢ ((𝑎 ∈ V ∧ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎) → (𝐶‘𝑎) = sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
37 | 1, 34, 36 | sylancr 694 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶‘𝑎) = sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
38 | 37, 34 | eqeltrd 2688 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶‘𝑎) ∈ 𝑎) |
39 | 38 | 3exp 1256 |
. 2
⊢ (𝜑 → (𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎))) |
40 | 39 | ralrimiv 2948 |
1
⊢ (𝜑 → ∀𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎)) |