Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem1 Structured version   Visualization version   GIF version

Theorem aomclem1 36642
Description: Lemma for dfac11 36650. This is the beginning of the proof that multiple choice is equivalent to choice. Our goal is to construct, by transfinite recursion, a well-ordering of (𝑅1𝐴). In what follows, 𝐴 is the index of the rank we wish to well-order, 𝑧 is the collection of well-orderings constructed so far, dom 𝑧 is the set of ordinal indexes of constructed ranks i.e. the next rank to construct, and 𝑦 is a postulated multiple-choice function.

Successor case 1, define a simple ordering from the well-ordered predecessor. (Contributed by Stefan O'Rear, 18-Jan-2015.)

Hypotheses
Ref Expression
aomclem1.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem1.on (𝜑 → dom 𝑧 ∈ On)
aomclem1.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem1.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
Assertion
Ref Expression
aomclem1 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
Distinct variable group:   𝑧,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem1
StepHypRef Expression
1 fvex 6113 . . 3 (𝑅1 dom 𝑧) ∈ V
2 vex 3176 . . . . . . . 8 𝑧 ∈ V
32dmex 6991 . . . . . . 7 dom 𝑧 ∈ V
43uniex 6851 . . . . . 6 dom 𝑧 ∈ V
54sucid 5721 . . . . 5 dom 𝑧 ∈ suc dom 𝑧
6 aomclem1.su . . . . 5 (𝜑 → dom 𝑧 = suc dom 𝑧)
75, 6syl5eleqr 2695 . . . 4 (𝜑 dom 𝑧 ∈ dom 𝑧)
8 aomclem1.we . . . 4 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
9 fveq2 6103 . . . . . 6 (𝑎 = dom 𝑧 → (𝑧𝑎) = (𝑧 dom 𝑧))
10 fveq2 6103 . . . . . 6 (𝑎 = dom 𝑧 → (𝑅1𝑎) = (𝑅1 dom 𝑧))
119, 10weeq12d 36628 . . . . 5 (𝑎 = dom 𝑧 → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝑧 dom 𝑧) We (𝑅1 dom 𝑧)))
1211rspcva 3280 . . . 4 (( dom 𝑧 ∈ dom 𝑧 ∧ ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎)) → (𝑧 dom 𝑧) We (𝑅1 dom 𝑧))
137, 8, 12syl2anc 691 . . 3 (𝜑 → (𝑧 dom 𝑧) We (𝑅1 dom 𝑧))
14 aomclem1.b . . . 4 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
1514wepwso 36631 . . 3 (((𝑅1 dom 𝑧) ∈ V ∧ (𝑧 dom 𝑧) We (𝑅1 dom 𝑧)) → 𝐵 Or 𝒫 (𝑅1 dom 𝑧))
161, 13, 15sylancr 694 . 2 (𝜑𝐵 Or 𝒫 (𝑅1 dom 𝑧))
176fveq2d 6107 . . . 4 (𝜑 → (𝑅1‘dom 𝑧) = (𝑅1‘suc dom 𝑧))
18 aomclem1.on . . . . 5 (𝜑 → dom 𝑧 ∈ On)
19 onuni 6885 . . . . 5 (dom 𝑧 ∈ On → dom 𝑧 ∈ On)
20 r1suc 8516 . . . . 5 ( dom 𝑧 ∈ On → (𝑅1‘suc dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
2118, 19, 203syl 18 . . . 4 (𝜑 → (𝑅1‘suc dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
2217, 21eqtrd 2644 . . 3 (𝜑 → (𝑅1‘dom 𝑧) = 𝒫 (𝑅1 dom 𝑧))
23 soeq2 4979 . . 3 ((𝑅1‘dom 𝑧) = 𝒫 (𝑅1 dom 𝑧) → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1 dom 𝑧)))
2422, 23syl 17 . 2 (𝜑 → (𝐵 Or (𝑅1‘dom 𝑧) ↔ 𝐵 Or 𝒫 (𝑅1 dom 𝑧)))
2516, 24mpbird 246 1 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  {copab 4642   Or wor 4958   We wwe 4996  dom cdm 5038  Oncon0 5640  suc csuc 5642  cfv 5804  𝑅1cr1 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-map 7746  df-r1 8510
This theorem is referenced by:  aomclem2  36643
  Copyright terms: Public domain W3C validator