Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem5 Structured version   Visualization version   GIF version

Theorem aomclem5 36646
Description: Lemma for dfac11 36650. Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem5.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem5.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem5.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem5.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem5.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem5.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem5.on (𝜑 → dom 𝑧 ∈ On)
aomclem5.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem5.a (𝜑𝐴 ∈ On)
aomclem5.za (𝜑 → dom 𝑧𝐴)
aomclem5.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem5 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem5
StepHypRef Expression
1 aomclem5.f . . . . . 6 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
2 aomclem5.on . . . . . . 7 (𝜑 → dom 𝑧 ∈ On)
32adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
4 simpr 476 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → dom 𝑧 = dom 𝑧)
5 aomclem5.we . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
65adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
71, 3, 4, 6aomclem4 36645 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → 𝐹 We (𝑅1‘dom 𝑧))
8 iftrue 4042 . . . . . . 7 (dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
98adantl 481 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐹)
10 eqidd 2611 . . . . . 6 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
119, 10weeq12d 36628 . . . . 5 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐹 We (𝑅1‘dom 𝑧)))
127, 11mpbird 246 . . . 4 ((𝜑 ∧ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
13 aomclem5.b . . . . . 6 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
14 aomclem5.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
15 aomclem5.d . . . . . 6 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
16 aomclem5.e . . . . . 6 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
172adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 ∈ On)
18 eloni 5650 . . . . . . . 8 (dom 𝑧 ∈ On → Ord dom 𝑧)
19 orduniorsuc 6922 . . . . . . . 8 (Ord dom 𝑧 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
202, 18, 193syl 18 . . . . . . 7 (𝜑 → (dom 𝑧 = dom 𝑧 ∨ dom 𝑧 = suc dom 𝑧))
2120orcanai 950 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧 = suc dom 𝑧)
225adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
23 aomclem5.a . . . . . . 7 (𝜑𝐴 ∈ On)
2423adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐴 ∈ On)
25 aomclem5.za . . . . . . 7 (𝜑 → dom 𝑧𝐴)
2625adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → dom 𝑧𝐴)
27 aomclem5.y . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2827adantr 480 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
2913, 14, 15, 16, 17, 21, 22, 24, 26, 28aomclem3 36644 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → 𝐸 We (𝑅1‘dom 𝑧))
30 iffalse 4045 . . . . . . 7 (¬ dom 𝑧 = dom 𝑧 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
3130adantl 481 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) = 𝐸)
32 eqidd 2611 . . . . . 6 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (𝑅1‘dom 𝑧) = (𝑅1‘dom 𝑧))
3331, 32weeq12d 36628 . . . . 5 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ 𝐸 We (𝑅1‘dom 𝑧)))
3429, 33mpbird 246 . . . 4 ((𝜑 ∧ ¬ dom 𝑧 = dom 𝑧) → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
3512, 34pm2.61dan 828 . . 3 (𝜑 → if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧))
36 weinxp 5109 . . 3 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
3735, 36sylib 207 . 2 (𝜑 → (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
38 aomclem5.g . . 3 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
39 weeq1 5026 . . 3 (𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) → (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧)))
4038, 39ax-mp 5 . 2 (𝐺 We (𝑅1‘dom 𝑧) ↔ (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) We (𝑅1‘dom 𝑧))
4137, 40sylibr 223 1 (𝜑𝐺 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   cuni 4372   cint 4410   class class class wbr 4583  {copab 4642  cmpt 4643   E cep 4947   We wwe 4996   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  Ord word 5639  Oncon0 5640  suc csuc 5642  cfv 5804  recscrecs 7354  Fincfn 7841  supcsup 8229  𝑅1cr1 8508  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-er 7629  df-map 7746  df-en 7842  df-fin 7845  df-sup 8231  df-r1 8510  df-rank 8511
This theorem is referenced by:  aomclem6  36647
  Copyright terms: Public domain W3C validator