Step | Hyp | Ref
| Expression |
1 | | dmadjrn 28138 |
. . 3
⊢ (𝑇 ∈ dom
adjℎ → (adjℎ‘𝑇) ∈ dom
adjℎ) |
2 | | dmadjop 28131 |
. . 3
⊢
((adjℎ‘𝑇) ∈ dom adjℎ →
(adjℎ‘𝑇): ℋ⟶ ℋ) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝑇 ∈ dom
adjℎ → (adjℎ‘𝑇): ℋ⟶ ℋ) |
4 | | simp2 1055 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑤 ∈ ℋ) |
5 | | adjcl 28175 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑦 ∈ ℋ) →
((adjℎ‘𝑇)‘𝑦) ∈ ℋ) |
6 | | hvmulcl 27254 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧
((adjℎ‘𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) ∈ ℋ) |
7 | 5, 6 | sylan2 490 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ (𝑇 ∈ dom
adjℎ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) ∈ ℋ) |
8 | 7 | an12s 839 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ dom
adjℎ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) ∈ ℋ) |
9 | 8 | adantrr 749 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) ∈ ℋ) |
10 | 9 | 3adant2 1073 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) ∈ ℋ) |
11 | | adjcl 28175 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑧 ∈ ℋ) →
((adjℎ‘𝑇)‘𝑧) ∈ ℋ) |
12 | 11 | adantrl 748 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) →
((adjℎ‘𝑇)‘𝑧) ∈ ℋ) |
13 | 12 | 3adant2 1073 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) →
((adjℎ‘𝑇)‘𝑧) ∈ ℋ) |
14 | | his7 27331 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℋ ∧ (𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) ∈ ℋ ∧
((adjℎ‘𝑇)‘𝑧) ∈ ℋ) → (𝑤 ·ih ((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦))) + (𝑤 ·ih
((adjℎ‘𝑇)‘𝑧)))) |
15 | 4, 10, 13, 14 | syl3anc 1318 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih ((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦))) + (𝑤 ·ih
((adjℎ‘𝑇)‘𝑧)))) |
16 | | adj2 28177 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑤) ·ih 𝑦) = (𝑤 ·ih
((adjℎ‘𝑇)‘𝑦))) |
17 | 16 | 3adant3l 1314 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑤) ·ih 𝑦) = (𝑤 ·ih
((adjℎ‘𝑇)‘𝑦))) |
18 | 17 | oveq2d 6565 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) →
((∗‘𝑥)
· ((𝑇‘𝑤)
·ih 𝑦)) = ((∗‘𝑥) · (𝑤 ·ih
((adjℎ‘𝑇)‘𝑦)))) |
19 | | simp3l 1082 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ) |
20 | | dmadjop 28131 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ∈ dom
adjℎ → 𝑇: ℋ⟶ ℋ) |
21 | 20 | ffvelrnda 6267 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑤) ∈ ℋ) |
22 | 21 | 3adant3 1074 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇‘𝑤) ∈ ℋ) |
23 | | simp3r 1083 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ) |
24 | | his5 27327 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ (𝑇‘𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑤) ·ih (𝑥
·ℎ 𝑦)) = ((∗‘𝑥) · ((𝑇‘𝑤) ·ih 𝑦))) |
25 | 19, 22, 23, 24 | syl3anc 1318 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑤) ·ih (𝑥
·ℎ 𝑦)) = ((∗‘𝑥) · ((𝑇‘𝑤) ·ih 𝑦))) |
26 | | simp2 1055 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑤 ∈ ℋ) |
27 | 5 | adantrl 748 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ dom
adjℎ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) →
((adjℎ‘𝑇)‘𝑦) ∈ ℋ) |
28 | 27 | 3adant2 1073 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) →
((adjℎ‘𝑇)‘𝑦) ∈ ℋ) |
29 | | his5 27327 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧
((adjℎ‘𝑇)‘𝑦) ∈ ℋ) → (𝑤 ·ih (𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih
((adjℎ‘𝑇)‘𝑦)))) |
30 | 19, 26, 28, 29 | syl3anc 1318 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑤 ·ih (𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih
((adjℎ‘𝑇)‘𝑦)))) |
31 | 18, 25, 30 | 3eqtr4d 2654 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑤) ·ih (𝑥
·ℎ 𝑦)) = (𝑤 ·ih (𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)))) |
32 | 31 | 3adant3r 1315 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇‘𝑤) ·ih (𝑥
·ℎ 𝑦)) = (𝑤 ·ih (𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)))) |
33 | | adj2 28177 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇‘𝑤) ·ih 𝑧) = (𝑤 ·ih
((adjℎ‘𝑇)‘𝑧))) |
34 | 33 | 3adant3l 1314 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇‘𝑤) ·ih 𝑧) = (𝑤 ·ih
((adjℎ‘𝑇)‘𝑧))) |
35 | 32, 34 | oveq12d 6567 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇‘𝑤) ·ih (𝑥
·ℎ 𝑦)) + ((𝑇‘𝑤) ·ih 𝑧)) = ((𝑤 ·ih (𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦))) + (𝑤 ·ih
((adjℎ‘𝑇)‘𝑧)))) |
36 | 21 | 3adant3 1074 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇‘𝑤) ∈ ℋ) |
37 | | hvmulcl 27254 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥
·ℎ 𝑦) ∈ ℋ) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑥
·ℎ 𝑦) ∈ ℋ) |
39 | 38 | 3ad2ant3 1077 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 ·ℎ 𝑦) ∈
ℋ) |
40 | | simp3r 1083 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ) |
41 | | his7 27331 |
. . . . . . . . . . . 12
⊢ (((𝑇‘𝑤) ∈ ℋ ∧ (𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇‘𝑤) ·ih ((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = (((𝑇‘𝑤) ·ih (𝑥
·ℎ 𝑦)) + ((𝑇‘𝑤) ·ih 𝑧))) |
42 | 36, 39, 40, 41 | syl3anc 1318 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇‘𝑤) ·ih ((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = (((𝑇‘𝑤) ·ih (𝑥
·ℎ 𝑦)) + ((𝑇‘𝑤) ·ih 𝑧))) |
43 | | hvaddcl 27253 |
. . . . . . . . . . . . 13
⊢ (((𝑥
·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈
ℋ) |
44 | 37, 43 | sylan 487 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
45 | | adj2 28177 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) → ((𝑇‘𝑤) ·ih ((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = (𝑤 ·ih
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)))) |
46 | 44, 45 | syl3an3 1353 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇‘𝑤) ·ih ((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = (𝑤 ·ih
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)))) |
47 | 42, 46 | eqtr3d 2646 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇‘𝑤) ·ih (𝑥
·ℎ 𝑦)) + ((𝑇‘𝑤) ·ih 𝑧)) = (𝑤 ·ih
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)))) |
48 | 15, 35, 47 | 3eqtr2rd 2651 |
. . . . . . . . 9
⊢ ((𝑇 ∈ dom
adjℎ ∧ 𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = (𝑤 ·ih ((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)))) |
49 | 48 | 3com23 1263 |
. . . . . . . 8
⊢ ((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = (𝑤 ·ih ((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)))) |
50 | 49 | 3expa 1257 |
. . . . . . 7
⊢ (((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = (𝑤 ·ih ((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)))) |
51 | 50 | ralrimiva 2949 |
. . . . . 6
⊢ ((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ∀𝑤 ∈ ℋ (𝑤
·ih ((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = (𝑤 ·ih ((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)))) |
52 | | adjcl 28175 |
. . . . . . . 8
⊢ ((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) →
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) ∈
ℋ) |
53 | 44, 52 | sylan2 490 |
. . . . . . 7
⊢ ((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) →
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) ∈
ℋ) |
54 | | hvaddcl 27253 |
. . . . . . . . 9
⊢ (((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) ∈ ℋ ∧
((adjℎ‘𝑇)‘𝑧) ∈ ℋ) → ((𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)) ∈ ℋ) |
55 | 8, 11, 54 | syl2an 493 |
. . . . . . . 8
⊢ (((𝑇 ∈ dom
adjℎ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ (𝑇 ∈ dom adjℎ ∧
𝑧 ∈ ℋ)) →
((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)) ∈ ℋ) |
56 | 55 | anandis 869 |
. . . . . . 7
⊢ ((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)) ∈ ℋ) |
57 | | hial2eq2 27348 |
. . . . . . 7
⊢
((((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) ∈ ℋ ∧ ((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ (𝑤
·ih ((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = (𝑤 ·ih ((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧))) ↔
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)))) |
58 | 53, 56, 57 | syl2anc 691 |
. . . . . 6
⊢ ((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (∀𝑤 ∈ ℋ (𝑤
·ih ((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = (𝑤 ·ih ((𝑥
·ℎ ((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧))) ↔
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)))) |
59 | 51, 58 | mpbid 221 |
. . . . 5
⊢ ((𝑇 ∈ dom
adjℎ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) →
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧))) |
60 | 59 | exp32 629 |
. . . 4
⊢ (𝑇 ∈ dom
adjℎ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ →
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧))))) |
61 | 60 | ralrimdv 2951 |
. . 3
⊢ (𝑇 ∈ dom
adjℎ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)))) |
62 | 61 | ralrimivv 2953 |
. 2
⊢ (𝑇 ∈ dom
adjℎ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧))) |
63 | | ellnop 28101 |
. 2
⊢
((adjℎ‘𝑇) ∈ LinOp ↔
((adjℎ‘𝑇): ℋ⟶ ℋ ∧
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
((adjℎ‘𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ
((adjℎ‘𝑇)‘𝑦)) +ℎ
((adjℎ‘𝑇)‘𝑧)))) |
64 | 3, 62, 63 | sylanbrc 695 |
1
⊢ (𝑇 ∈ dom
adjℎ → (adjℎ‘𝑇) ∈ LinOp) |