HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjlnop Structured version   Unicode version

Theorem adjlnop 26877
Description: The adjoint of an operator is linear. Proposition 1 of [AkhiezerGlazman] p. 80. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjlnop  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  LinOp )

Proof of Theorem adjlnop
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjrn 26686 . . 3  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  dom  adjh )
2 dmadjop 26679 . . 3  |-  ( (
adjh `  T )  e.  dom  adjh  ->  ( adjh `  T ) : ~H --> ~H )
31, 2syl 16 . 2  |-  ( T  e.  dom  adjh  ->  (
adjh `  T ) : ~H --> ~H )
4 simp2 998 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  ->  w  e.  ~H )
5 adjcl 26723 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  y  e.  ~H )  ->  ( ( adjh `  T
) `  y )  e.  ~H )
6 hvmulcl 25802 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( ( adjh `  T
) `  y )  e.  ~H )  ->  (
x  .h  ( (
adjh `  T ) `  y ) )  e. 
~H )
75, 6sylan2 474 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( T  e.  dom  adjh  /\  y  e.  ~H ) )  ->  (
x  .h  ( (
adjh `  T ) `  y ) )  e. 
~H )
87an12s 801 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( x  .h  ( ( adjh `  T
) `  y )
)  e.  ~H )
98adantrr 716 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H )
1093adant2 1016 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H )
11 adjcl 26723 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  z  e.  ~H )  ->  ( ( adjh `  T
) `  z )  e.  ~H )
1211adantrl 715 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  z )  e.  ~H )
13123adant2 1016 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  z )  e.  ~H )
14 his7 25879 . . . . . . . . . . 11  |-  ( ( w  e.  ~H  /\  ( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H  /\  ( ( adjh `  T ) `  z )  e.  ~H )  ->  ( w  .ih  ( ( x  .h  ( ( adjh `  T
) `  y )
)  +h  ( (
adjh `  T ) `  z ) ) )  =  ( ( w 
.ih  ( x  .h  ( ( adjh `  T
) `  y )
) )  +  ( w  .ih  ( (
adjh `  T ) `  z ) ) ) )
154, 10, 13, 14syl3anc 1229 . . . . . . . . . 10  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) )  =  ( ( w  .ih  (
x  .h  ( (
adjh `  T ) `  y ) ) )  +  ( w  .ih  ( ( adjh `  T
) `  z )
) ) )
16 adj2 26725 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  w )  .ih  y
)  =  ( w 
.ih  ( ( adjh `  T ) `  y
) ) )
17163adant3l 1225 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( T `  w )  .ih  y )  =  ( w  .ih  ( (
adjh `  T ) `  y ) ) )
1817oveq2d 6297 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( (
* `  x )  x.  ( ( T `  w )  .ih  y
) )  =  ( ( * `  x
)  x.  ( w 
.ih  ( ( adjh `  T ) `  y
) ) ) )
19 simp3l 1025 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  x  e.  CC )
20 dmadjop 26679 . . . . . . . . . . . . . . . 16  |-  ( T  e.  dom  adjh  ->  T : ~H --> ~H )
2120ffvelrnda 6016 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H )  ->  ( T `  w
)  e.  ~H )
22213adant3 1017 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( T `  w )  e.  ~H )
23 simp3r 1026 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  y  e.  ~H )
24 his5 25875 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( T `  w )  e.  ~H  /\  y  e.  ~H )  ->  (
( T `  w
)  .ih  ( x  .h  y ) )  =  ( ( * `  x )  x.  (
( T `  w
)  .ih  y )
) )
2519, 22, 23, 24syl3anc 1229 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( T `  w )  .ih  ( x  .h  y
) )  =  ( ( * `  x
)  x.  ( ( T `  w ) 
.ih  y ) ) )
26 simp2 998 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  w  e.  ~H )
275adantrl 715 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( adjh `  T ) `  y )  e.  ~H )
28273adant2 1016 . . . . . . . . . . . . . 14  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( adjh `  T ) `  y )  e.  ~H )
29 his5 25875 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  w  e.  ~H  /\  (
( adjh `  T ) `  y )  e.  ~H )  ->  ( w  .ih  ( x  .h  (
( adjh `  T ) `  y ) ) )  =  ( ( * `
 x )  x.  ( w  .ih  (
( adjh `  T ) `  y ) ) ) )
3019, 26, 28, 29syl3anc 1229 . . . . . . . . . . . . 13  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( w  .ih  ( x  .h  (
( adjh `  T ) `  y ) ) )  =  ( ( * `
 x )  x.  ( w  .ih  (
( adjh `  T ) `  y ) ) ) )
3118, 25, 303eqtr4d 2494 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( T `  w )  .ih  ( x  .h  y
) )  =  ( w  .ih  ( x  .h  ( ( adjh `  T ) `  y
) ) ) )
32313adant3r 1226 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  (
x  .h  y ) )  =  ( w 
.ih  ( x  .h  ( ( adjh `  T
) `  y )
) ) )
33 adj2 26725 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  z  e.  ~H )  ->  ( ( T `  w )  .ih  z
)  =  ( w 
.ih  ( ( adjh `  T ) `  z
) ) )
34333adant3l 1225 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  z
)  =  ( w 
.ih  ( ( adjh `  T ) `  z
) ) )
3532, 34oveq12d 6299 . . . . . . . . . 10  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( ( T `
 w )  .ih  ( x  .h  y
) )  +  ( ( T `  w
)  .ih  z )
)  =  ( ( w  .ih  ( x  .h  ( ( adjh `  T ) `  y
) ) )  +  ( w  .ih  (
( adjh `  T ) `  z ) ) ) )
36213adant3 1017 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( T `  w
)  e.  ~H )
37 hvmulcl 25802 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
3837adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( x  .h  y )  e.  ~H )
39383ad2ant3 1020 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( x  .h  y
)  e.  ~H )
40 simp3r 1026 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
z  e.  ~H )
41 his7 25879 . . . . . . . . . . . 12  |-  ( ( ( T `  w
)  e.  ~H  /\  ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( ( ( T `  w
)  .ih  ( x  .h  y ) )  +  ( ( T `  w )  .ih  z
) ) )
4236, 39, 40, 41syl3anc 1229 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( ( ( T `  w
)  .ih  ( x  .h  y ) )  +  ( ( T `  w )  .ih  z
) ) )
43 hvaddcl 25801 . . . . . . . . . . . . 13  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
4437, 43sylan 471 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
45 adj2 26725 . . . . . . . . . . . 12  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( w 
.ih  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) ) ) )
4644, 45syl3an3 1264 . . . . . . . . . . 11  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( T `  w )  .ih  (
( x  .h  y
)  +h  z ) )  =  ( w 
.ih  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) ) ) )
4742, 46eqtr3d 2486 . . . . . . . . . 10  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( ( T `
 w )  .ih  ( x  .h  y
) )  +  ( ( T `  w
)  .ih  z )
)  =  ( w 
.ih  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) ) ) )
4815, 35, 473eqtr2rd 2491 . . . . . . . . 9  |-  ( ( T  e.  dom  adjh  /\  w  e.  ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( w  .ih  (
( adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
49483com23 1203 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  (
w  .ih  ( ( adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
50493expa 1197 . . . . . . 7  |-  ( ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  /\  w  e.  ~H )  ->  ( w  .ih  (
( adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
5150ralrimiva 2857 . . . . . 6  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  ->  A. w  e.  ~H  ( w  .ih  ( (
adjh `  T ) `  ( ( x  .h  y )  +h  z
) ) )  =  ( w  .ih  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
52 adjcl 26723 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  e.  ~H )
5344, 52sylan2 474 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  e.  ~H )
54 hvaddcl 25801 . . . . . . . . 9  |-  ( ( ( x  .h  (
( adjh `  T ) `  y ) )  e. 
~H  /\  ( ( adjh `  T ) `  z )  e.  ~H )  ->  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) )  e. 
~H )
558, 11, 54syl2an 477 . . . . . . . 8  |-  ( ( ( T  e.  dom  adjh  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  ( T  e.  dom  adjh  /\  z  e.  ~H ) )  -> 
( ( x  .h  ( ( adjh `  T
) `  y )
)  +h  ( (
adjh `  T ) `  z ) )  e. 
~H )
5655anandis 830 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( x  .h  ( ( adjh `  T
) `  y )
)  +h  ( (
adjh `  T ) `  z ) )  e. 
~H )
57 hial2eq2 25896 . . . . . . 7  |-  ( ( ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  e.  ~H  /\  (
( x  .h  (
( adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
)  e.  ~H )  ->  ( A. w  e. 
~H  ( w  .ih  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) ) )  =  ( w 
.ih  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) )  <-> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) )
5853, 56, 57syl2anc 661 . . . . . 6  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( A. w  e. 
~H  ( w  .ih  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) ) )  =  ( w 
.ih  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) )  <-> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) )
5951, 58mpbid 210 . . . . 5  |-  ( ( T  e.  dom  adjh  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) )
6059exp32 605 . . . 4  |-  ( T  e.  dom  adjh  ->  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( z  e.  ~H  ->  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) ) )
6160ralrimdv 2859 . . 3  |-  ( T  e.  dom  adjh  ->  ( ( x  e.  CC  /\  y  e.  ~H )  ->  A. z  e.  ~H  ( ( adjh `  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( adjh `  T ) `  y
) )  +h  (
( adjh `  T ) `  z ) ) ) )
6261ralrimivv 2863 . 2  |-  ( T  e.  dom  adjh  ->  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( (
adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) )
63 ellnop 26649 . 2  |-  ( (
adjh `  T )  e.  LinOp 
<->  ( ( adjh `  T
) : ~H --> ~H  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( ( adjh `  T ) `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( (
adjh `  T ) `  y ) )  +h  ( ( adjh `  T
) `  z )
) ) )
643, 62, 63sylanbrc 664 1  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  LinOp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   dom cdm 4989   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493    + caddc 9498    x. cmul 9500   *ccj 12908   ~Hchil 25708    +h cva 25709    .h csm 25710    .ih csp 25711   LinOpclo 25736   adjhcado 25744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-hilex 25788  ax-hfvadd 25789  ax-hvcom 25790  ax-hvass 25791  ax-hv0cl 25792  ax-hvaddid 25793  ax-hfvmul 25794  ax-hvmulid 25795  ax-hvdistr2 25798  ax-hvmul0 25799  ax-hfi 25868  ax-his1 25871  ax-his2 25872  ax-his3 25873  ax-his4 25874
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-po 4790  df-so 4791  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-2 10600  df-cj 12911  df-re 12912  df-im 12913  df-hvsub 25760  df-lnop 26632  df-adjh 26640
This theorem is referenced by:  adjsslnop  26878
  Copyright terms: Public domain W3C validator