Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn2 Structured version   Visualization version   GIF version

Theorem acsfn2 16147
 Description: Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn2 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑉   𝑋,𝑎,𝑏,𝑐   𝐸,𝑎
Allowed substitution hints:   𝐸(𝑏,𝑐)

Proof of Theorem acsfn2
StepHypRef Expression
1 elpwi 4117 . . . . 5 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2 ralss 3631 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎)))
3 ralss 3631 . . . . . . . 8 (𝑎𝑋 → (∀𝑐𝑎 (𝑏𝑎𝐸𝑎) ↔ ∀𝑐𝑋 (𝑐𝑎 → (𝑏𝑎𝐸𝑎))))
4 r19.21v 2943 . . . . . . . 8 (∀𝑐𝑎 (𝑏𝑎𝐸𝑎) ↔ (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎))
5 impexp 461 . . . . . . . . . 10 (((𝑐𝑎𝑏𝑎) → 𝐸𝑎) ↔ (𝑐𝑎 → (𝑏𝑎𝐸𝑎)))
6 vex 3176 . . . . . . . . . . . 12 𝑐 ∈ V
7 vex 3176 . . . . . . . . . . . 12 𝑏 ∈ V
86, 7prss 4291 . . . . . . . . . . 11 ((𝑐𝑎𝑏𝑎) ↔ {𝑐, 𝑏} ⊆ 𝑎)
98imbi1i 338 . . . . . . . . . 10 (((𝑐𝑎𝑏𝑎) → 𝐸𝑎) ↔ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
105, 9bitr3i 265 . . . . . . . . 9 ((𝑐𝑎 → (𝑏𝑎𝐸𝑎)) ↔ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
1110ralbii 2963 . . . . . . . 8 (∀𝑐𝑋 (𝑐𝑎 → (𝑏𝑎𝐸𝑎)) ↔ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
123, 4, 113bitr3g 301 . . . . . . 7 (𝑎𝑋 → ((𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎) ↔ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
1312ralbidv 2969 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑋 (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎) ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
142, 13bitrd 267 . . . . 5 (𝑎𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
151, 14syl 17 . . . 4 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
1615rabbiia 3161 . . 3 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
17 riinrab 4532 . . 3 (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
1816, 17eqtr4i 2635 . 2 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} = (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)})
19 mreacs 16142 . . . 4 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
2019adantr 480 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
21 riinrab 4532 . . . . . . 7 (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
2219ad2antrr 758 . . . . . . . 8 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
23 simpll 786 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → 𝑋𝑉)
24 simprr 792 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → 𝐸𝑋)
25 prssi 4293 . . . . . . . . . . . . . 14 ((𝑐𝑋𝑏𝑋) → {𝑐, 𝑏} ⊆ 𝑋)
2625ancoms 468 . . . . . . . . . . . . 13 ((𝑏𝑋𝑐𝑋) → {𝑐, 𝑏} ⊆ 𝑋)
2726ad2ant2lr 780 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑐, 𝑏} ⊆ 𝑋)
28 prfi 8120 . . . . . . . . . . . . 13 {𝑐, 𝑏} ∈ Fin
2928a1i 11 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑐, 𝑏} ∈ Fin)
30 acsfn 16143 . . . . . . . . . . . 12 (((𝑋𝑉𝐸𝑋) ∧ ({𝑐, 𝑏} ⊆ 𝑋 ∧ {𝑐, 𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3123, 24, 27, 29, 30syl22anc 1319 . . . . . . . . . . 11 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3231expr 641 . . . . . . . . . 10 (((𝑋𝑉𝑏𝑋) ∧ 𝑐𝑋) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3332ralimdva 2945 . . . . . . . . 9 ((𝑋𝑉𝑏𝑋) → (∀𝑐𝑋 𝐸𝑋 → ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3433imp 444 . . . . . . . 8 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
35 mreriincl 16081 . . . . . . . 8 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3622, 34, 35syl2anc 691 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3721, 36syl5eqelr 2693 . . . . . 6 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3837ex 449 . . . . 5 ((𝑋𝑉𝑏𝑋) → (∀𝑐𝑋 𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3938ralimdva 2945 . . . 4 (𝑋𝑉 → (∀𝑏𝑋𝑐𝑋 𝐸𝑋 → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
4039imp 444 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
41 mreriincl 16081 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4220, 40, 41syl2anc 691 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4318, 42syl5eqel 2692 1 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977  ∀wral 2896  {crab 2900   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  {cpr 4127  ∩ ciin 4456  ‘cfv 5804  Fincfn 7841  Moorecmre 16065  ACScacs 16068 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-mre 16069  df-mrc 16070  df-acs 16072 This theorem is referenced by:  submacs  17188  submgmacs  41594
 Copyright terms: Public domain W3C validator