Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1c Structured version   Visualization version   GIF version

Theorem acsfn1c 16146
 Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn1c ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝐾𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐾,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐   𝑋,𝑎,𝑏,𝑐   𝐸,𝑎
Allowed substitution hints:   𝐸(𝑏,𝑐)

Proof of Theorem acsfn1c
StepHypRef Expression
1 riinrab 4532 . 2 (𝒫 𝑋 𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝐾𝑐𝑎 𝐸𝑎}
2 mreacs 16142 . . . 4 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
32adantr 480 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
4 acsfn1 16145 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
54ex 449 . . . . 5 (𝑋𝑉 → (∀𝑐𝑋 𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋)))
65ralimdv 2946 . . . 4 (𝑋𝑉 → (∀𝑏𝐾𝑐𝑋 𝐸𝑋 → ∀𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋)))
76imp 444 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → ∀𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
8 mreriincl 16081 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎}) ∈ (ACS‘𝑋))
93, 7, 8syl2anc 691 . 2 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝐾 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑎 𝐸𝑎}) ∈ (ACS‘𝑋))
101, 9syl5eqelr 2693 1 ((𝑋𝑉 ∧ ∀𝑏𝐾𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝐾𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977  ∀wral 2896  {crab 2900   ∩ cin 3539  𝒫 cpw 4108  ∩ ciin 4456  ‘cfv 5804  Moorecmre 16065  ACScacs 16068 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-en 7842  df-fin 7845  df-mre 16069  df-mrc 16070  df-acs 16072 This theorem is referenced by:  nsgacs  17453  lssacs  18788
 Copyright terms: Public domain W3C validator