MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn2 Structured version   Unicode version

Theorem acsfn2 14918
Description: Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn2  |-  ( ( X  e.  V  /\  A. b  e.  X  A. c  e.  X  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  a  A. c  e.  a  E  e.  a }  e.  (ACS `  X )
)
Distinct variable groups:    a, b,
c, V    X, a,
b, c    E, a
Allowed substitution hints:    E( b, c)

Proof of Theorem acsfn2
StepHypRef Expression
1 elpwi 4019 . . . . 5  |-  ( a  e.  ~P X  -> 
a  C_  X )
2 ralss 3566 . . . . . 6  |-  ( a 
C_  X  ->  ( A. b  e.  a  A. c  e.  a  E  e.  a  <->  A. b  e.  X  ( b  e.  a  ->  A. c  e.  a  E  e.  a ) ) )
3 ralss 3566 . . . . . . . 8  |-  ( a 
C_  X  ->  ( A. c  e.  a 
( b  e.  a  ->  E  e.  a )  <->  A. c  e.  X  ( c  e.  a  ->  ( b  e.  a  ->  E  e.  a ) ) ) )
4 r19.21v 2869 . . . . . . . 8  |-  ( A. c  e.  a  (
b  e.  a  ->  E  e.  a )  <->  ( b  e.  a  ->  A. c  e.  a  E  e.  a )
)
5 impexp 446 . . . . . . . . . 10  |-  ( ( ( c  e.  a  /\  b  e.  a )  ->  E  e.  a )  <->  ( c  e.  a  ->  ( b  e.  a  ->  E  e.  a ) ) )
6 vex 3116 . . . . . . . . . . . 12  |-  c  e. 
_V
7 vex 3116 . . . . . . . . . . . 12  |-  b  e. 
_V
86, 7prss 4181 . . . . . . . . . . 11  |-  ( ( c  e.  a  /\  b  e.  a )  <->  { c ,  b } 
C_  a )
98imbi1i 325 . . . . . . . . . 10  |-  ( ( ( c  e.  a  /\  b  e.  a )  ->  E  e.  a )  <->  ( {
c ,  b } 
C_  a  ->  E  e.  a ) )
105, 9bitr3i 251 . . . . . . . . 9  |-  ( ( c  e.  a  -> 
( b  e.  a  ->  E  e.  a ) )  <->  ( {
c ,  b } 
C_  a  ->  E  e.  a ) )
1110ralbii 2895 . . . . . . . 8  |-  ( A. c  e.  X  (
c  e.  a  -> 
( b  e.  a  ->  E  e.  a ) )  <->  A. c  e.  X  ( {
c ,  b } 
C_  a  ->  E  e.  a ) )
123, 4, 113bitr3g 287 . . . . . . 7  |-  ( a 
C_  X  ->  (
( b  e.  a  ->  A. c  e.  a  E  e.  a )  <->  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) ) )
1312ralbidv 2903 . . . . . 6  |-  ( a 
C_  X  ->  ( A. b  e.  X  ( b  e.  a  ->  A. c  e.  a  E  e.  a )  <->  A. b  e.  X  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) ) )
142, 13bitrd 253 . . . . 5  |-  ( a 
C_  X  ->  ( A. b  e.  a  A. c  e.  a  E  e.  a  <->  A. b  e.  X  A. c  e.  X  ( {
c ,  b } 
C_  a  ->  E  e.  a ) ) )
151, 14syl 16 . . . 4  |-  ( a  e.  ~P X  -> 
( A. b  e.  a  A. c  e.  a  E  e.  a  <->  A. b  e.  X  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) ) )
1615rabbiia 3102 . . 3  |-  { a  e.  ~P X  |  A. b  e.  a  A. c  e.  a  E  e.  a }  =  { a  e.  ~P X  |  A. b  e.  X  A. c  e.  X  ( {
c ,  b } 
C_  a  ->  E  e.  a ) }
17 riinrab 4401 . . 3  |-  ( ~P X  i^i  |^|_ b  e.  X  { a  e.  ~P X  |  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  X  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) }
1816, 17eqtr4i 2499 . 2  |-  { a  e.  ~P X  |  A. b  e.  a  A. c  e.  a  E  e.  a }  =  ( ~P X  i^i  |^|_ b  e.  X  { a  e.  ~P X  |  A. c  e.  X  ( {
c ,  b } 
C_  a  ->  E  e.  a ) } )
19 mreacs 14913 . . . 4  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
2019adantr 465 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  X  A. c  e.  X  E  e.  X )  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
21 riinrab 4401 . . . . . . 7  |-  ( ~P X  i^i  |^|_ c  e.  X  { a  e.  ~P X  |  ( { c ,  b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) }
2219ad2antrr 725 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  A. c  e.  X  E  e.  X )  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
23 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  ( c  e.  X  /\  E  e.  X ) )  ->  X  e.  V )
24 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  ( c  e.  X  /\  E  e.  X ) )  ->  E  e.  X )
25 prssi 4183 . . . . . . . . . . . . . 14  |-  ( ( c  e.  X  /\  b  e.  X )  ->  { c ,  b }  C_  X )
2625ancoms 453 . . . . . . . . . . . . 13  |-  ( ( b  e.  X  /\  c  e.  X )  ->  { c ,  b }  C_  X )
2726ad2ant2lr 747 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  ( c  e.  X  /\  E  e.  X ) )  ->  { c ,  b }  C_  X )
28 prfi 7795 . . . . . . . . . . . . 13  |-  { c ,  b }  e.  Fin
2928a1i 11 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  ( c  e.  X  /\  E  e.  X ) )  ->  { c ,  b }  e.  Fin )
30 acsfn 14914 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  E  e.  X
)  /\  ( {
c ,  b } 
C_  X  /\  {
c ,  b }  e.  Fin ) )  ->  { a  e. 
~P X  |  ( { c ,  b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) )
3123, 24, 27, 29, 30syl22anc 1229 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  ( c  e.  X  /\  E  e.  X ) )  ->  { a  e.  ~P X  |  ( {
c ,  b } 
C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) )
3231expr 615 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  c  e.  X )  ->  ( E  e.  X  ->  { a  e.  ~P X  |  ( { c ,  b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) ) )
3332ralimdva 2872 . . . . . . . . 9  |-  ( ( X  e.  V  /\  b  e.  X )  ->  ( A. c  e.  X  E  e.  X  ->  A. c  e.  X  { a  e.  ~P X  |  ( {
c ,  b } 
C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) ) )
3433imp 429 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  A. c  e.  X  E  e.  X )  ->  A. c  e.  X  { a  e.  ~P X  |  ( { c ,  b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) )
35 mreriincl 14853 . . . . . . . 8  |-  ( ( (ACS `  X )  e.  (Moore `  ~P X )  /\  A. c  e.  X  { a  e. 
~P X  |  ( { c ,  b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) )  ->  ( ~P X  i^i  |^|_ c  e.  X  { a  e.  ~P X  |  ( { c ,  b }  C_  a  ->  E  e.  a ) } )  e.  (ACS `  X ) )
3622, 34, 35syl2anc 661 . . . . . . 7  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  A. c  e.  X  E  e.  X )  ->  ( ~P X  i^i  |^|_ c  e.  X  { a  e.  ~P X  |  ( { c ,  b }  C_  a  ->  E  e.  a ) } )  e.  (ACS `  X ) )
3721, 36syl5eqelr 2560 . . . . . 6  |-  ( ( ( X  e.  V  /\  b  e.  X
)  /\  A. c  e.  X  E  e.  X )  ->  { a  e.  ~P X  |  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) )
3837ex 434 . . . . 5  |-  ( ( X  e.  V  /\  b  e.  X )  ->  ( A. c  e.  X  E  e.  X  ->  { a  e.  ~P X  |  A. c  e.  X  ( {
c ,  b } 
C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) ) )
3938ralimdva 2872 . . . 4  |-  ( X  e.  V  ->  ( A. b  e.  X  A. c  e.  X  E  e.  X  ->  A. b  e.  X  {
a  e.  ~P X  |  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) ) )
4039imp 429 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  X  A. c  e.  X  E  e.  X )  ->  A. b  e.  X  { a  e.  ~P X  |  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) )
41 mreriincl 14853 . . 3  |-  ( ( (ACS `  X )  e.  (Moore `  ~P X )  /\  A. b  e.  X  { a  e. 
~P X  |  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) )  ->  ( ~P X  i^i  |^|_ b  e.  X  { a  e.  ~P X  |  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) } )  e.  (ACS `  X ) )
4220, 40, 41syl2anc 661 . 2  |-  ( ( X  e.  V  /\  A. b  e.  X  A. c  e.  X  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  X  { a  e.  ~P X  |  A. c  e.  X  ( { c ,  b }  C_  a  ->  E  e.  a ) } )  e.  (ACS `  X ) )
4318, 42syl5eqel 2559 1  |-  ( ( X  e.  V  /\  A. b  e.  X  A. c  e.  X  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  a  A. c  e.  a  E  e.  a }  e.  (ACS `  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1767   A.wral 2814   {crab 2818    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   {cpr 4029   |^|_ciin 4326   ` cfv 5588   Fincfn 7516  Moorecmre 14837  ACScacs 14840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-fin 7520  df-mre 14841  df-mrc 14842  df-acs 14844
This theorem is referenced by:  submacs  15815
  Copyright terms: Public domain W3C validator