MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3 Structured version   Visualization version   GIF version

Theorem 2lgslem3 24929
Description: Lemma 3 for 2lgs 24932. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))

Proof of Theorem 2lgslem3
StepHypRef Expression
1 nnz 11276 . . 3 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
2 lgsdir2lem3 24852 . . 3 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}))
31, 2sylan 487 . 2 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}))
4 elun 3715 . . 3 ((𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝑃 mod 8) ∈ {1, 7} ∨ (𝑃 mod 8) ∈ {3, 5}))
5 ovex 6577 . . . . . . . . 9 (𝑃 mod 8) ∈ V
65elpr 4146 . . . . . . . 8 ((𝑃 mod 8) ∈ {1, 7} ↔ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))
7 2lgslem2.n . . . . . . . . . . . . 13 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
872lgslem3a1 24925 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
98a1d 25 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0))
109expcom 450 . . . . . . . . . 10 ((𝑃 mod 8) = 1 → (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0)))
1110impd 446 . . . . . . . . 9 ((𝑃 mod 8) = 1 → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1272lgslem3d1 24928 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
1312a1d 25 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0))
1413expcom 450 . . . . . . . . . 10 ((𝑃 mod 8) = 7 → (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0)))
1514impd 446 . . . . . . . . 9 ((𝑃 mod 8) = 7 → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1611, 15jaoi 393 . . . . . . . 8 (((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
176, 16sylbi 206 . . . . . . 7 ((𝑃 mod 8) ∈ {1, 7} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1817imp 444 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (𝑁 mod 2) = 0)
19 iftrue 4042 . . . . . . 7 ((𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
2019adantr 480 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
2118, 20eqtr4d 2647 . . . . 5 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
2221ex 449 . . . 4 ((𝑃 mod 8) ∈ {1, 7} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
235elpr 4146 . . . . 5 ((𝑃 mod 8) ∈ {3, 5} ↔ ((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5))
2472lgslem3b1 24926 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
2524expcom 450 . . . . . . . . . 10 ((𝑃 mod 8) = 3 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2672lgslem3c1 24927 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)
2726expcom 450 . . . . . . . . . 10 ((𝑃 mod 8) = 5 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2825, 27jaoi 393 . . . . . . . . 9 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2928imp 444 . . . . . . . 8 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = 1)
30 1re 9918 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
31 1lt3 11073 . . . . . . . . . . . . . . . 16 1 < 3
3230, 31ltneii 10029 . . . . . . . . . . . . . . 15 1 ≠ 3
3332nesymi 2839 . . . . . . . . . . . . . 14 ¬ 3 = 1
34 3re 10971 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
35 3lt7 11089 . . . . . . . . . . . . . . . 16 3 < 7
3634, 35ltneii 10029 . . . . . . . . . . . . . . 15 3 ≠ 7
3736neii 2784 . . . . . . . . . . . . . 14 ¬ 3 = 7
3833, 37pm3.2i 470 . . . . . . . . . . . . 13 (¬ 3 = 1 ∧ ¬ 3 = 7)
39 eqeq1 2614 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 1 ↔ 3 = 1))
4039notbid 307 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 3 = 1))
41 eqeq1 2614 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 7 ↔ 3 = 7))
4241notbid 307 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 3 = 7))
4340, 42anbi12d 743 . . . . . . . . . . . . 13 ((𝑃 mod 8) = 3 → ((¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7) ↔ (¬ 3 = 1 ∧ ¬ 3 = 7)))
4438, 43mpbiri 247 . . . . . . . . . . . 12 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
45 1lt5 11080 . . . . . . . . . . . . . . . 16 1 < 5
4630, 45ltneii 10029 . . . . . . . . . . . . . . 15 1 ≠ 5
4746nesymi 2839 . . . . . . . . . . . . . 14 ¬ 5 = 1
48 5re 10976 . . . . . . . . . . . . . . . 16 5 ∈ ℝ
49 5lt7 11087 . . . . . . . . . . . . . . . 16 5 < 7
5048, 49ltneii 10029 . . . . . . . . . . . . . . 15 5 ≠ 7
5150neii 2784 . . . . . . . . . . . . . 14 ¬ 5 = 7
5247, 51pm3.2i 470 . . . . . . . . . . . . 13 (¬ 5 = 1 ∧ ¬ 5 = 7)
53 eqeq1 2614 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 1 ↔ 5 = 1))
5453notbid 307 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 5 = 1))
55 eqeq1 2614 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 7 ↔ 5 = 7))
5655notbid 307 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 5 = 7))
5754, 56anbi12d 743 . . . . . . . . . . . . 13 ((𝑃 mod 8) = 5 → ((¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7) ↔ (¬ 5 = 1 ∧ ¬ 5 = 7)))
5852, 57mpbiri 247 . . . . . . . . . . . 12 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
5944, 58jaoi 393 . . . . . . . . . . 11 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6059adantr 480 . . . . . . . . . 10 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
61 ioran 510 . . . . . . . . . . 11 (¬ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) ↔ (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6261, 6xchnxbir 322 . . . . . . . . . 10 (¬ (𝑃 mod 8) ∈ {1, 7} ↔ (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6360, 62sylibr 223 . . . . . . . . 9 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → ¬ (𝑃 mod 8) ∈ {1, 7})
6463iffalsed 4047 . . . . . . . 8 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 1)
6529, 64eqtr4d 2647 . . . . . . 7 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
6665a1d 25 . . . . . 6 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6766expimpd 627 . . . . 5 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6823, 67sylbi 206 . . . 4 ((𝑃 mod 8) ∈ {3, 5} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6922, 68jaoi 393 . . 3 (((𝑃 mod 8) ∈ {1, 7} ∨ (𝑃 mod 8) ∈ {3, 5}) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
704, 69sylbi 206 . 2 ((𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
713, 70mpcom 37 1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  cun 3538  ifcif 4036  {cpr 4127   class class class wbr 4583  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  4c4 10949  5c5 10950  7c7 10952  8c8 10953  cz 11254  cfl 12453   mod cmo 12530  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fl 12455  df-mod 12531  df-dvds 14822
This theorem is referenced by:  2lgs  24932
  Copyright terms: Public domain W3C validator