MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stconst Structured version   Visualization version   GIF version

Theorem 1stconst 7152
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)

Proof of Theorem 1stconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4251 . . 3 (𝐵𝑉 → {𝐵} ≠ ∅)
2 fo1stres 7083 . . 3 ({𝐵} ≠ ∅ → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
31, 2syl 17 . 2 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
4 moeq 3349 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝑦, 𝐵
54moani 2513 . . . . 5 ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)
6 vex 3176 . . . . . . . 8 𝑦 ∈ V
76brres 5323 . . . . . . 7 (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
8 fo1st 7079 . . . . . . . . . . 11 1st :V–onto→V
9 fofn 6030 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 3176 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 6146 . . . . . . . . . 10 ((1st Fn V ∧ 𝑥 ∈ V) → ((1st𝑥) = 𝑦𝑥1st 𝑦))
1310, 11, 12mp2an 704 . . . . . . . . 9 ((1st𝑥) = 𝑦𝑥1st 𝑦)
1413anbi1i 727 . . . . . . . 8 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
15 elxp7 7092 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 × {𝐵}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})))
16 eleq1 2676 . . . . . . . . . . . . . . 15 ((1st𝑥) = 𝑦 → ((1st𝑥) ∈ 𝐴𝑦𝐴))
1716biimpa 500 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (1st𝑥) ∈ 𝐴) → 𝑦𝐴)
1817adantrr 749 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) → 𝑦𝐴)
1918adantrl 748 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑦𝐴)
20 elsni 4142 . . . . . . . . . . . . . 14 ((2nd𝑥) ∈ {𝐵} → (2nd𝑥) = 𝐵)
21 eqopi 7093 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2221an12s 839 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2320, 22sylanr2 683 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) ∈ {𝐵})) → 𝑥 = ⟨𝑦, 𝐵⟩)
2423adantrrl 756 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑥 = ⟨𝑦, 𝐵⟩)
2519, 24jca 553 . . . . . . . . . . 11 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2615, 25sylan2b 491 . . . . . . . . . 10 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2726adantl 481 . . . . . . . . 9 ((𝐵𝑉 ∧ ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
28 simprr 792 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2928fveq2d 6107 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = (1st ‘⟨𝑦, 𝐵⟩))
30 simprl 790 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑦𝐴)
31 simpl 472 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵𝑉)
32 op1stg 7071 . . . . . . . . . . . 12 ((𝑦𝐴𝐵𝑉) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3330, 31, 32syl2anc 691 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3429, 33eqtrd 2644 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = 𝑦)
35 snidg 4153 . . . . . . . . . . . . 13 (𝐵𝑉𝐵 ∈ {𝐵})
3635adantr 480 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵 ∈ {𝐵})
37 opelxpi 5072 . . . . . . . . . . . 12 ((𝑦𝐴𝐵 ∈ {𝐵}) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3830, 36, 37syl2anc 691 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3928, 38eqeltrd 2688 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 ∈ (𝐴 × {𝐵}))
4034, 39jca 553 . . . . . . . . 9 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})))
4127, 40impbida 873 . . . . . . . 8 (𝐵𝑉 → (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4214, 41syl5bbr 273 . . . . . . 7 (𝐵𝑉 → ((𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
437, 42syl5bb 271 . . . . . 6 (𝐵𝑉 → (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4443mobidv 2479 . . . . 5 (𝐵𝑉 → (∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
455, 44mpbiri 247 . . . 4 (𝐵𝑉 → ∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4645alrimiv 1842 . . 3 (𝐵𝑉 → ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
47 funcnv2 5871 . . 3 (Fun (1st ↾ (𝐴 × {𝐵})) ↔ ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4846, 47sylibr 223 . 2 (𝐵𝑉 → Fun (1st ↾ (𝐴 × {𝐵})))
49 dff1o3 6056 . 2 ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴 ↔ ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴 ∧ Fun (1st ↾ (𝐴 × {𝐵}))))
503, 48, 49sylanbrc 695 1 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  ∃*wmo 2459  wne 2780  Vcvv 3173  c0 3874  {csn 4125  cop 4131   class class class wbr 4583   × cxp 5036  ccnv 5037  cres 5040  Fun wfun 5798   Fn wfn 5799  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  1st c1st 7057  2nd c2nd 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1st 7059  df-2nd 7060
This theorem is referenced by:  curry2  7159  domss2  8004  fv1stcnv  30925
  Copyright terms: Public domain W3C validator