Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv1stcnv Structured version   Visualization version   GIF version

Theorem fv1stcnv 30925
 Description: The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv1stcnv ((𝑋𝐴𝑌𝑉) → ((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩)

Proof of Theorem fv1stcnv
StepHypRef Expression
1 snidg 4153 . . . . 5 (𝑌𝑉𝑌 ∈ {𝑌})
21anim2i 591 . . . 4 ((𝑋𝐴𝑌𝑉) → (𝑋𝐴𝑌 ∈ {𝑌}))
3 eqid 2610 . . . 4 𝑋 = 𝑋
42, 3jctil 558 . . 3 ((𝑋𝐴𝑌𝑉) → (𝑋 = 𝑋 ∧ (𝑋𝐴𝑌 ∈ {𝑌})))
5 opex 4859 . . . . . . 7 𝑋, 𝑌⟩ ∈ V
6 brcnvg 5225 . . . . . . 7 ((𝑋𝐴 ∧ ⟨𝑋, 𝑌⟩ ∈ V) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋))
75, 6mpan2 703 . . . . . 6 (𝑋𝐴 → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋))
8 brresg 5325 . . . . . 6 (𝑋𝐴 → (⟨𝑋, 𝑌⟩(1st ↾ (𝐴 × {𝑌}))𝑋 ↔ (⟨𝑋, 𝑌⟩1st 𝑋 ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}))))
97, 8bitrd 267 . . . . 5 (𝑋𝐴 → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ (⟨𝑋, 𝑌⟩1st 𝑋 ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}))))
109adantr 480 . . . 4 ((𝑋𝐴𝑌𝑉) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ (⟨𝑋, 𝑌⟩1st 𝑋 ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}))))
11 opelxp 5070 . . . . . 6 (⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌}) ↔ (𝑋𝐴𝑌 ∈ {𝑌}))
1211anbi2i 726 . . . . 5 ((⟨𝑋, 𝑌⟩1st 𝑋 ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌})) ↔ (⟨𝑋, 𝑌⟩1st 𝑋 ∧ (𝑋𝐴𝑌 ∈ {𝑌})))
13 br1steqg 30919 . . . . . . 7 ((𝑋𝐴𝑌𝑉𝑋𝐴) → (⟨𝑋, 𝑌⟩1st 𝑋𝑋 = 𝑋))
14133anidm13 1376 . . . . . 6 ((𝑋𝐴𝑌𝑉) → (⟨𝑋, 𝑌⟩1st 𝑋𝑋 = 𝑋))
1514anbi1d 737 . . . . 5 ((𝑋𝐴𝑌𝑉) → ((⟨𝑋, 𝑌⟩1st 𝑋 ∧ (𝑋𝐴𝑌 ∈ {𝑌})) ↔ (𝑋 = 𝑋 ∧ (𝑋𝐴𝑌 ∈ {𝑌}))))
1612, 15syl5bb 271 . . . 4 ((𝑋𝐴𝑌𝑉) → ((⟨𝑋, 𝑌⟩1st 𝑋 ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐴 × {𝑌})) ↔ (𝑋 = 𝑋 ∧ (𝑋𝐴𝑌 ∈ {𝑌}))))
1710, 16bitrd 267 . . 3 ((𝑋𝐴𝑌𝑉) → (𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩ ↔ (𝑋 = 𝑋 ∧ (𝑋𝐴𝑌 ∈ {𝑌}))))
184, 17mpbird 246 . 2 ((𝑋𝐴𝑌𝑉) → 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩)
19 1stconst 7152 . . . . 5 (𝑌𝑉 → (1st ↾ (𝐴 × {𝑌})):(𝐴 × {𝑌})–1-1-onto𝐴)
20 f1ocnv 6062 . . . . 5 ((1st ↾ (𝐴 × {𝑌})):(𝐴 × {𝑌})–1-1-onto𝐴(1st ↾ (𝐴 × {𝑌})):𝐴1-1-onto→(𝐴 × {𝑌}))
21 f1ofn 6051 . . . . 5 ((1st ↾ (𝐴 × {𝑌})):𝐴1-1-onto→(𝐴 × {𝑌}) → (1st ↾ (𝐴 × {𝑌})) Fn 𝐴)
2219, 20, 213syl 18 . . . 4 (𝑌𝑉(1st ↾ (𝐴 × {𝑌})) Fn 𝐴)
2322adantl 481 . . 3 ((𝑋𝐴𝑌𝑉) → (1st ↾ (𝐴 × {𝑌})) Fn 𝐴)
24 simpl 472 . . 3 ((𝑋𝐴𝑌𝑉) → 𝑋𝐴)
25 fnbrfvb 6146 . . 3 (((1st ↾ (𝐴 × {𝑌})) Fn 𝐴𝑋𝐴) → (((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩ ↔ 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩))
2623, 24, 25syl2anc 691 . 2 ((𝑋𝐴𝑌𝑉) → (((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩ ↔ 𝑋(1st ↾ (𝐴 × {𝑌}))⟨𝑋, 𝑌⟩))
2718, 26mpbird 246 1 ((𝑋𝐴𝑌𝑉) → ((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  {csn 4125  ⟨cop 4131   class class class wbr 4583   × cxp 5036  ◡ccnv 5037   ↾ cres 5040   Fn wfn 5799  –1-1-onto→wf1o 5803  ‘cfv 5804  1st c1st 7057 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1st 7059  df-2nd 7060 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator