Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  moani Structured version   Visualization version   GIF version

Theorem moani 2513
 Description: "At most one" is still true when a conjunct is added. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
moani.1 ∃*𝑥𝜑
Assertion
Ref Expression
moani ∃*𝑥(𝜓𝜑)

Proof of Theorem moani
StepHypRef Expression
1 moani.1 . 2 ∃*𝑥𝜑
2 moan 2512 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
31, 2ax-mp 5 1 ∃*𝑥(𝜓𝜑)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383  ∃*wmo 2459 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-eu 2462  df-mo 2463 This theorem is referenced by:  euxfr2  3358  rmoeq  3372  reuxfr2d  4817  fvopab6  6218  1stconst  7152  2ndconst  7153  iunmapdisj  8729  axaddf  9845  axmulf  9846  joinval  16828  meetval  16842  reuxfr3d  28713
 Copyright terms: Public domain W3C validator