MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1st Structured version   Visualization version   GIF version

Theorem fo1st 7079
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4835 . . . . 5 {𝑥} ∈ V
21dmex 6991 . . . 4 dom {𝑥} ∈ V
32uniex 6851 . . 3 dom {𝑥} ∈ V
4 df-1st 7059 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
53, 4fnmpti 5935 . 2 1st Fn V
64rnmpt 5292 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
7 vex 3176 . . . . 5 𝑦 ∈ V
8 opex 4859 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op1sta 5535 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2619 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
11 sneq 4135 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211dmeqd 5248 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1312unieqd 4382 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413eqeq2d 2620 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = dom {𝑥} ↔ 𝑦 = dom {⟨𝑦, 𝑦⟩}))
1514rspcev 3282 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
168, 10, 15mp2an 704 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
177, 162th 253 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1817abbi2i 2725 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
196, 18eqtr4i 2635 . 2 ran 1st = V
20 df-fo 5810 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
215, 19, 20mpbir2an 957 1 1st :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  Vcvv 3173  {csn 4125  cop 4131   cuni 4372  dom cdm 5038  ran crn 5039   Fn wfn 5799  ontowfo 5802  1st c1st 7057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-fo 5810  df-1st 7059
This theorem is referenced by:  1stcof  7087  df1st2  7150  1stconst  7152  fsplit  7169  algrflem  7173  fpwwe  9347  axpre-sup  9869  homadm  16513  homacd  16514  dmaf  16522  cdaf  16523  1stf1  16655  1stf2  16656  1stfcl  16660  upxp  21236  uptx  21238  cnmpt1st  21281  bcthlem4  22932  uniiccdif  23152  vafval  26842  smfval  26844  0vfval  26845  vsfval  26872  xppreima  28829  xppreima2  28830  1stpreimas  28866  1stpreima  28867  gsummpt2d  29112  cnre2csqima  29285  br1steq  30917  poimirlem26  32605  poimirlem27  32606
  Copyright terms: Public domain W3C validator