Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version |
Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1830 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | mobidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | mobid 2477 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∃*wmo 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-ex 1696 df-nf 1701 df-eu 2462 df-mo 2463 |
This theorem is referenced by: mobii 2481 mosubopt 4897 dffun6f 5818 funmo 5820 caovmo 6769 1stconst 7152 2ndconst 7153 brdom3 9231 brdom6disj 9235 imasaddfnlem 16011 imasvscafn 16020 hausflim 21595 hausflf 21611 cnextfun 21678 haustsms 21749 limcmo 23452 perfdvf 23473 phpreu 32563 funressnfv 39857 |
Copyright terms: Public domain | W3C validator |