MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpncan Structured version   Visualization version   GIF version

Theorem xpncan 11953
Description: Extended real version of pncan 10166. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpncan ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)

Proof of Theorem xpncan
StepHypRef Expression
1 rexneg 11916 . . . 4 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
21adantl 481 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -𝑒𝐵 = -𝐵)
32oveq2d 6565 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = ((𝐴 +𝑒 𝐵) +𝑒 -𝐵))
4 renegcl 10223 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
54ad2antlr 759 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -𝐵 ∈ ℝ)
6 rexr 9964 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*)
7 renepnf 9966 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ +∞)
8 xaddmnf2 11934 . . . . . 6 ((-𝐵 ∈ ℝ* ∧ -𝐵 ≠ +∞) → (-∞ +𝑒 -𝐵) = -∞)
96, 7, 8syl2anc 691 . . . . 5 (-𝐵 ∈ ℝ → (-∞ +𝑒 -𝐵) = -∞)
105, 9syl 17 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (-∞ +𝑒 -𝐵) = -∞)
11 oveq1 6556 . . . . . 6 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
12 rexr 9964 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
13 renepnf 9966 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
14 xaddmnf2 11934 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
1512, 13, 14syl2anc 691 . . . . . . 7 (𝐵 ∈ ℝ → (-∞ +𝑒 𝐵) = -∞)
1615adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (-∞ +𝑒 𝐵) = -∞)
1711, 16sylan9eqr 2666 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
1817oveq1d 6564 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (-∞ +𝑒 -𝐵))
19 simpr 476 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
2010, 18, 193eqtr4d 2654 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
21 simpll 786 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
22 simpr 476 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ≠ -∞)
2312ad2antlr 759 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ*)
24 renemnf 9967 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2524ad2antlr 759 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ≠ -∞)
264ad2antlr 759 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ)
2726, 6syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ*)
28 renemnf 9967 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ -∞)
2926, 28syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ≠ -∞)
30 xaddass 11951 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (-𝐵 ∈ ℝ* ∧ -𝐵 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
3121, 22, 23, 25, 27, 29, 30syl222anc 1334 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
32 simplr 788 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
33 rexadd 11937 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (𝐵 +𝑒 -𝐵) = (𝐵 + -𝐵))
3432, 26, 33syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = (𝐵 + -𝐵))
3532recnd 9947 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℂ)
3635negidd 10261 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 + -𝐵) = 0)
3734, 36eqtrd 2644 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = 0)
3837oveq2d 6565 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = (𝐴 +𝑒 0))
39 xaddid1 11946 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
4039ad2antrr 758 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 0) = 𝐴)
4138, 40eqtrd 2644 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = 𝐴)
4231, 41eqtrd 2644 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
4320, 42pm2.61dane 2869 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
443, 43eqtrd 2644 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952  -cneg 10146  -𝑒cxne 11819   +𝑒 cxad 11820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-sub 10147  df-neg 10148  df-xneg 11822  df-xadd 11823
This theorem is referenced by:  xnpcan  11954  xleadd1  11957  xaddeq0  28907
  Copyright terms: Public domain W3C validator