Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xblpnfps | Structured version Visualization version GIF version |
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
xblpnfps | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 9971 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | elblps 22002 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < +∞))) | |
3 | 1, 2 | mp3an3 1405 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < +∞))) |
4 | psmetcl 21922 | . . . . . . . 8 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑃𝐷𝐴) ∈ ℝ*) | |
5 | psmetge0 21927 | . . . . . . . 8 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑃𝐷𝐴)) | |
6 | ge0nemnf 11878 | . . . . . . . 8 ⊢ (((𝑃𝐷𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝐴)) → (𝑃𝐷𝐴) ≠ -∞) | |
7 | 4, 5, 6 | syl2anc 691 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑃𝐷𝐴) ≠ -∞) |
8 | ngtmnft 11872 | . . . . . . . . 9 ⊢ ((𝑃𝐷𝐴) ∈ ℝ* → ((𝑃𝐷𝐴) = -∞ ↔ ¬ -∞ < (𝑃𝐷𝐴))) | |
9 | 4, 8 | syl 17 | . . . . . . . 8 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑃𝐷𝐴) = -∞ ↔ ¬ -∞ < (𝑃𝐷𝐴))) |
10 | 9 | necon2abid 2824 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (-∞ < (𝑃𝐷𝐴) ↔ (𝑃𝐷𝐴) ≠ -∞)) |
11 | 7, 10 | mpbird 246 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → -∞ < (𝑃𝐷𝐴)) |
12 | 11 | biantrurd 528 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞))) |
13 | xrrebnd 11873 | . . . . . 6 ⊢ ((𝑃𝐷𝐴) ∈ ℝ* → ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞))) | |
14 | 4, 13 | syl 17 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞))) |
15 | 12, 14 | bitr4d 270 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ)) |
16 | 15 | 3expa 1257 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ)) |
17 | 16 | pm5.32da 671 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < +∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ))) |
18 | 3, 17 | bitrd 267 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 0cc0 9815 +∞cpnf 9950 -∞cmnf 9951 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 PsMetcpsmet 19551 ballcbl 19554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-2 10956 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-psmet 19559 df-bl 19562 |
This theorem is referenced by: xblss2ps 22016 |
Copyright terms: Public domain | W3C validator |