Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtxdun Structured version   Visualization version   GIF version

Theorem vtxdun 40696
Description: The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 19-Feb-2021.)
Hypotheses
Ref Expression
vtxdun.i 𝐼 = (iEdg‘𝐺)
vtxdun.j 𝐽 = (iEdg‘𝐻)
vtxdun.vg 𝑉 = (Vtx‘𝐺)
vtxdun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
vtxdun.vu (𝜑 → (Vtx‘𝑈) = 𝑉)
vtxdun.d (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅)
vtxdun.fi (𝜑 → Fun 𝐼)
vtxdun.fj (𝜑 → Fun 𝐽)
vtxdun.n (𝜑𝑁𝑉)
vtxdun.u (𝜑 → (iEdg‘𝑈) = (𝐼𝐽))
Assertion
Ref Expression
vtxdun (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)))

Proof of Theorem vtxdun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 2905 . . . . . . . 8 {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
2 vtxdun.u . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑈) = (𝐼𝐽))
32dmeqd 5248 . . . . . . . . . . . . . 14 (𝜑 → dom (iEdg‘𝑈) = dom (𝐼𝐽))
4 dmun 5253 . . . . . . . . . . . . . 14 dom (𝐼𝐽) = (dom 𝐼 ∪ dom 𝐽)
53, 4syl6eq 2660 . . . . . . . . . . . . 13 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐼 ∪ dom 𝐽))
65eleq2d 2673 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ 𝑥 ∈ (dom 𝐼 ∪ dom 𝐽)))
7 elun 3715 . . . . . . . . . . . 12 (𝑥 ∈ (dom 𝐼 ∪ dom 𝐽) ↔ (𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽))
86, 7syl6bb 275 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ (𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽)))
98anbi1d 737 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))
10 andir 908 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))
119, 10syl6bb 275 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))))
1211abbidv 2728 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))})
131, 12syl5eq 2656 . . . . . . 7 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))})
14 unab 3853 . . . . . . . . 9 ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))}
1514eqcomi 2619 . . . . . . . 8 {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))})
1615a1i 11 . . . . . . 7 (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}))
17 df-rab 2905 . . . . . . . . 9 {𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
182fveq1d 6105 . . . . . . . . . . . . 13 (𝜑 → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
1918adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
20 vtxdun.fi . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐼)
21 funfn 5833 . . . . . . . . . . . . . . 15 (Fun 𝐼𝐼 Fn dom 𝐼)
2220, 21sylib 207 . . . . . . . . . . . . . 14 (𝜑𝐼 Fn dom 𝐼)
2322adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼)
24 vtxdun.fj . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐽)
25 funfn 5833 . . . . . . . . . . . . . . 15 (Fun 𝐽𝐽 Fn dom 𝐽)
2624, 25sylib 207 . . . . . . . . . . . . . 14 (𝜑𝐽 Fn dom 𝐽)
2726adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → 𝐽 Fn dom 𝐽)
28 vtxdun.d . . . . . . . . . . . . . 14 (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅)
2928anim1i 590 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼))
30 fvun1 6179 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼)) → ((𝐼𝐽)‘𝑥) = (𝐼𝑥))
3123, 27, 29, 30syl3anc 1318 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐼) → ((𝐼𝐽)‘𝑥) = (𝐼𝑥))
3219, 31eqtrd 2644 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = (𝐼𝑥))
3332eleq2d 2673 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐼) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐼𝑥)))
3433rabbidva 3163 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)})
3517, 34syl5eqr 2658 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)})
36 df-rab 2905 . . . . . . . . 9 {𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
3718adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
3822adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → 𝐼 Fn dom 𝐼)
3926adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → 𝐽 Fn dom 𝐽)
4028anim1i 590 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽))
41 fvun2 6180 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽)) → ((𝐼𝐽)‘𝑥) = (𝐽𝑥))
4238, 39, 40, 41syl3anc 1318 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐽) → ((𝐼𝐽)‘𝑥) = (𝐽𝑥))
4337, 42eqtrd 2644 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = (𝐽𝑥))
4443eleq2d 2673 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐽) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐽𝑥)))
4544rabbidva 3163 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})
4636, 45syl5eqr 2658 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})
4735, 46uneq12d 3730 . . . . . . 7 (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}))
4813, 16, 473eqtrd 2648 . . . . . 6 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}))
4948fveq2d 6107 . . . . 5 (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = (#‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
50 vtxdun.i . . . . . . . . . 10 𝐼 = (iEdg‘𝐺)
51 fvex 6113 . . . . . . . . . 10 (iEdg‘𝐺) ∈ V
5250, 51eqeltri 2684 . . . . . . . . 9 𝐼 ∈ V
5352dmex 6991 . . . . . . . 8 dom 𝐼 ∈ V
5453rabex 4740 . . . . . . 7 {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V
5554a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V)
56 vtxdun.j . . . . . . . . . 10 𝐽 = (iEdg‘𝐻)
57 fvex 6113 . . . . . . . . . 10 (iEdg‘𝐻) ∈ V
5856, 57eqeltri 2684 . . . . . . . . 9 𝐽 ∈ V
5958dmex 6991 . . . . . . . 8 dom 𝐽 ∈ V
6059rabex 4740 . . . . . . 7 {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V
6160a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V)
62 ssrab2 3650 . . . . . . . . 9 {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ⊆ dom 𝐼
63 ssrab2 3650 . . . . . . . . 9 {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ⊆ dom 𝐽
64 ss2in 3802 . . . . . . . . 9 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽))
6562, 63, 64mp2an 704 . . . . . . . 8 ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽)
6665, 28syl5sseq 3616 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ ∅)
67 ss0 3926 . . . . . . 7 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅)
6866, 67syl 17 . . . . . 6 (𝜑 → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅)
69 hashunx 13036 . . . . . 6 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V ∧ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V ∧ ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅) → (#‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
7055, 61, 68, 69syl3anc 1318 . . . . 5 (𝜑 → (#‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
7149, 70eqtrd 2644 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
72 df-rab 2905 . . . . . . . 8 {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
738anbi1d 737 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))
74 andir 908 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))
7573, 74syl6bb 275 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))))
7675abbidv 2728 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))})
7772, 76syl5eq 2656 . . . . . . 7 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))})
78 unab 3853 . . . . . . . . 9 ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))}
7978eqcomi 2619 . . . . . . . 8 {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})})
8079a1i 11 . . . . . . 7 (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}))
81 df-rab 2905 . . . . . . . . 9 {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
8232eqeq1d 2612 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐼) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐼𝑥) = {𝑁}))
8382rabbidva 3163 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})
8481, 83syl5eqr 2658 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})
85 df-rab 2905 . . . . . . . . 9 {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
8643eqeq1d 2612 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐽) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐽𝑥) = {𝑁}))
8786rabbidva 3163 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})
8885, 87syl5eqr 2658 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})
8984, 88uneq12d 3730 . . . . . . 7 (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))
9077, 80, 893eqtrd 2648 . . . . . 6 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))
9190fveq2d 6107 . . . . 5 (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = (#‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
9253rabex 4740 . . . . . . 7 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V
9392a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V)
9459rabex 4740 . . . . . . 7 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V
9594a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V)
96 ssrab2 3650 . . . . . . . . 9 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ⊆ dom 𝐼
97 ssrab2 3650 . . . . . . . . 9 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ⊆ dom 𝐽
98 ss2in 3802 . . . . . . . . 9 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽))
9996, 97, 98mp2an 704 . . . . . . . 8 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽)
10099, 28syl5sseq 3616 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ ∅)
101 ss0 3926 . . . . . . 7 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅)
102100, 101syl 17 . . . . . 6 (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅)
103 hashunx 13036 . . . . . 6 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V ∧ ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅) → (#‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})) = ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10493, 95, 102, 103syl3anc 1318 . . . . 5 (𝜑 → (#‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})) = ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10591, 104eqtrd 2644 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10671, 105oveq12d 6567 . . 3 (𝜑 → ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) +𝑒 ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
107 hashxnn0 12989 . . . . 5 ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V → (#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) ∈ ℕ0*)
10855, 107syl 17 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) ∈ ℕ0*)
109 hashxnn0 12989 . . . . 5 ({𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V → (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ∈ ℕ0*)
11061, 109syl 17 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ∈ ℕ0*)
111 hashxnn0 12989 . . . . 5 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V → (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) ∈ ℕ0*)
11293, 111syl 17 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) ∈ ℕ0*)
113 hashxnn0 12989 . . . . 5 ({𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V → (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ∈ ℕ0*)
11495, 113syl 17 . . . 4 (𝜑 → (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ∈ ℕ0*)
115108, 110, 112, 114xnn0add4d 12006 . . 3 (𝜑 → (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) +𝑒 ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))) = (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
116106, 115eqtrd 2644 . 2 (𝜑 → ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
117 vtxdun.n . . . 4 (𝜑𝑁𝑉)
118 vtxdun.vu . . . 4 (𝜑 → (Vtx‘𝑈) = 𝑉)
119117, 118eleqtrrd 2691 . . 3 (𝜑𝑁 ∈ (Vtx‘𝑈))
120 eqid 2610 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
121 eqid 2610 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
122 eqid 2610 . . . 4 dom (iEdg‘𝑈) = dom (iEdg‘𝑈)
123120, 121, 122vtxdgval 40684 . . 3 (𝑁 ∈ (Vtx‘𝑈) → ((VtxDeg‘𝑈)‘𝑁) = ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})))
124119, 123syl 17 . 2 (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})))
125 vtxdun.vg . . . . 5 𝑉 = (Vtx‘𝐺)
126 eqid 2610 . . . . 5 dom 𝐼 = dom 𝐼
127125, 50, 126vtxdgval 40684 . . . 4 (𝑁𝑉 → ((VtxDeg‘𝐺)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})))
128117, 127syl 17 . . 3 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})))
129 vtxdun.vh . . . . 5 (𝜑 → (Vtx‘𝐻) = 𝑉)
130117, 129eleqtrrd 2691 . . . 4 (𝜑𝑁 ∈ (Vtx‘𝐻))
131 eqid 2610 . . . . 5 (Vtx‘𝐻) = (Vtx‘𝐻)
132 eqid 2610 . . . . 5 dom 𝐽 = dom 𝐽
133131, 56, 132vtxdgval 40684 . . . 4 (𝑁 ∈ (Vtx‘𝐻) → ((VtxDeg‘𝐻)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
134130, 133syl 17 . . 3 (𝜑 → ((VtxDeg‘𝐻)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
135128, 134oveq12d 6567 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)) = (((#‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((#‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
136116, 124, 1353eqtr4d 2654 1 (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  {cab 2596  {crab 2900  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  dom cdm 5038  Fun wfun 5798   Fn wfn 5799  cfv 5804  (class class class)co 6549  0*cxnn0 11240   +𝑒 cxad 11820  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674  VtxDegcvtxdg 40681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-hash 12980  df-vtxdg 40682
This theorem is referenced by:  vtxdfiun  40697  vtxduhgrun  40698  p1evtxdeqlem  40728
  Copyright terms: Public domain W3C validator