Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredg2vtx Structured version   Visualization version   GIF version

Theorem upgredg2vtx 25814
 Description: For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 5-Dec-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgredg2vtx ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})
Distinct variable groups:   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem upgredg2vtx
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2upgredg 25811 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑐𝑉 𝐶 = {𝑎, 𝑐})
433adant3 1074 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → ∃𝑎𝑉𝑐𝑉 𝐶 = {𝑎, 𝑐})
5 elpr2elpr 4336 . . . . . . 7 ((𝑎𝑉𝑐𝑉𝐴 ∈ {𝑎, 𝑐}) → ∃𝑏𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})
653expia 1259 . . . . . 6 ((𝑎𝑉𝑐𝑉) → (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}))
7 eleq2 2677 . . . . . . 7 (𝐶 = {𝑎, 𝑐} → (𝐴𝐶𝐴 ∈ {𝑎, 𝑐}))
8 eqeq1 2614 . . . . . . . 8 (𝐶 = {𝑎, 𝑐} → (𝐶 = {𝐴, 𝑏} ↔ {𝑎, 𝑐} = {𝐴, 𝑏}))
98rexbidv 3034 . . . . . . 7 (𝐶 = {𝑎, 𝑐} → (∃𝑏𝑉 𝐶 = {𝐴, 𝑏} ↔ ∃𝑏𝑉 {𝑎, 𝑐} = {𝐴, 𝑏}))
107, 9imbi12d 333 . . . . . 6 (𝐶 = {𝑎, 𝑐} → ((𝐴𝐶 → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏}) ↔ (𝐴 ∈ {𝑎, 𝑐} → ∃𝑏𝑉 {𝑎, 𝑐} = {𝐴, 𝑏})))
116, 10syl5ibr 235 . . . . 5 (𝐶 = {𝑎, 𝑐} → ((𝑎𝑉𝑐𝑉) → (𝐴𝐶 → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})))
1211com13 86 . . . 4 (𝐴𝐶 → ((𝑎𝑉𝑐𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})))
13123ad2ant3 1077 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → ((𝑎𝑉𝑐𝑉) → (𝐶 = {𝑎, 𝑐} → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})))
1413rexlimdvv 3019 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → (∃𝑎𝑉𝑐𝑉 𝐶 = {𝑎, 𝑐} → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏}))
154, 14mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸𝐴𝐶) → ∃𝑏𝑉 𝐶 = {𝐴, 𝑏})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  {cpr 4127  ‘cfv 5804  Vtxcvtx 25673   UPGraph cupgr 25747  Edgcedga 25792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-upgr 25749  df-edga 25793 This theorem is referenced by:  usgredg2vtx  40446  uspgredg2vtxeu  40447
 Copyright terms: Public domain W3C validator