HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopf1o Structured version   Visualization version   GIF version

Theorem unopf1o 28159
Description: A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopf1o (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)

Proof of Theorem unopf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunop 28115 . . . . 5 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
21simplbi 475 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
3 fof 6028 . . . 4 (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ)
42, 3syl 17 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
5 unop 28158 . . . . . . . . . . . . 13 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
653anidm23 1377 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
763adant3 1074 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
8 unop 28158 . . . . . . . . . . . . 13 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
983anidm23 1377 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
1093adant2 1073 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
117, 10oveq12d 6567 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) = ((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)))
12 unop 28158 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
13 unop 28158 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑥)) = (𝑦 ·ih 𝑥))
14133com23 1263 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑥)) = (𝑦 ·ih 𝑥))
1512, 14oveq12d 6567 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥))) = ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥)))
1611, 15oveq12d 6567 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
17163expb 1258 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
18 ffvelrn 6265 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
19 ffvelrn 6265 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2018, 19anim12dan 878 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
214, 20sylan 487 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
22 normlem9at 27362 . . . . . . . . 9 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))))
2321, 22syl 17 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))))
24 normlem9at 27362 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
2524adantl 481 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
2617, 23, 253eqtr4rd 2655 . . . . . . 7 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))))
2726eqeq1d 2612 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0))
28 hvsubcl 27258 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) ∈ ℋ)
29 his6 27340 . . . . . . . . 9 ((𝑥 𝑦) ∈ ℋ → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (𝑥 𝑦) = 0))
3028, 29syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (𝑥 𝑦) = 0))
31 hvsubeq0 27309 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 𝑦) = 0𝑥 = 𝑦))
3230, 31bitrd 267 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ 𝑥 = 𝑦))
3332adantl 481 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ 𝑥 = 𝑦))
34 hvsubcl 27258 . . . . . . . . 9 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑇𝑥) − (𝑇𝑦)) ∈ ℋ)
35 his6 27340 . . . . . . . . 9 (((𝑇𝑥) − (𝑇𝑦)) ∈ ℋ → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ ((𝑇𝑥) − (𝑇𝑦)) = 0))
3634, 35syl 17 . . . . . . . 8 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ ((𝑇𝑥) − (𝑇𝑦)) = 0))
37 hvsubeq0 27309 . . . . . . . 8 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (((𝑇𝑥) − (𝑇𝑦)) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
3836, 37bitrd 267 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
3921, 38syl 17 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
4027, 33, 393bitr3rd 298 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) = (𝑇𝑦) ↔ 𝑥 = 𝑦))
4140biimpd 218 . . . 4 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
4241ralrimivva 2954 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
43 dff13 6416 . . 3 (𝑇: ℋ–1-1→ ℋ ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
444, 42, 43sylanbrc 695 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1→ ℋ)
45 df-f1o 5811 . 2 (𝑇: ℋ–1-1-onto→ ℋ ↔ (𝑇: ℋ–1-1→ ℋ ∧ 𝑇: ℋ–onto→ ℋ))
4644, 2, 45sylanbrc 695 1 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  0cc0 9815   + caddc 9818  cmin 10145  chil 27160   ·ih csp 27163  0c0v 27165   cmv 27166  UniOpcuo 27190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689  df-hvsub 27212  df-unop 28086
This theorem is referenced by:  unopnorm  28160  cnvunop  28161  unopadj  28162  unoplin  28163  counop  28164  unopbd  28258
  Copyright terms: Public domain W3C validator