HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopf1o Structured version   Unicode version

Theorem unopf1o 25271
Description: A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopf1o  |-  ( T  e.  UniOp  ->  T : ~H
-1-1-onto-> ~H )

Proof of Theorem unopf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunop 25227 . . . . 5  |-  ( T  e.  UniOp 
<->  ( T : ~H -onto-> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  ( T `  y )
)  =  ( x 
.ih  y ) ) )
21simplbi 460 . . . 4  |-  ( T  e.  UniOp  ->  T : ~H -onto-> ~H )
3 fof 5615 . . . 4  |-  ( T : ~H -onto-> ~H  ->  T : ~H --> ~H )
42, 3syl 16 . . 3  |-  ( T  e.  UniOp  ->  T : ~H
--> ~H )
5 unop 25270 . . . . . . . . . . . . 13  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  x  e. 
~H )  ->  (
( T `  x
)  .ih  ( T `  x ) )  =  ( x  .ih  x
) )
653anidm23 1277 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  x  e.  ~H )  ->  (
( T `  x
)  .ih  ( T `  x ) )  =  ( x  .ih  x
) )
763adant3 1008 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  x
)  .ih  ( T `  x ) )  =  ( x  .ih  x
) )
8 unop 25270 . . . . . . . . . . . . 13  |-  ( ( T  e.  UniOp  /\  y  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  y
)  .ih  ( T `  y ) )  =  ( y  .ih  y
) )
983anidm23 1277 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( T `  y
)  .ih  ( T `  y ) )  =  ( y  .ih  y
) )
1093adant2 1007 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  y
)  .ih  ( T `  y ) )  =  ( y  .ih  y
) )
117, 10oveq12d 6104 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( ( T `  x )  .ih  ( T `  x )
)  +  ( ( T `  y ) 
.ih  ( T `  y ) ) )  =  ( ( x 
.ih  x )  +  ( y  .ih  y
) ) )
12 unop 25270 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  x
)  .ih  ( T `  y ) )  =  ( x  .ih  y
) )
13 unop 25270 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  y  e.  ~H  /\  x  e. 
~H )  ->  (
( T `  y
)  .ih  ( T `  x ) )  =  ( y  .ih  x
) )
14133com23 1193 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  y
)  .ih  ( T `  x ) )  =  ( y  .ih  x
) )
1512, 14oveq12d 6104 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( ( T `  x )  .ih  ( T `  y )
)  +  ( ( T `  y ) 
.ih  ( T `  x ) ) )  =  ( ( x 
.ih  y )  +  ( y  .ih  x
) ) )
1611, 15oveq12d 6104 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( ( ( T `
 x )  .ih  ( T `  x ) )  +  ( ( T `  y ) 
.ih  ( T `  y ) ) )  -  ( ( ( T `  x ) 
.ih  ( T `  y ) )  +  ( ( T `  y )  .ih  ( T `  x )
) ) )  =  ( ( ( x 
.ih  x )  +  ( y  .ih  y
) )  -  (
( x  .ih  y
)  +  ( y 
.ih  x ) ) ) )
17163expb 1188 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( ( T `  x )  .ih  ( T `  x )
)  +  ( ( T `  y ) 
.ih  ( T `  y ) ) )  -  ( ( ( T `  x ) 
.ih  ( T `  y ) )  +  ( ( T `  y )  .ih  ( T `  x )
) ) )  =  ( ( ( x 
.ih  x )  +  ( y  .ih  y
) )  -  (
( x  .ih  y
)  +  ( y 
.ih  x ) ) ) )
18 ffvelrn 5836 . . . . . . . . . . 11  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
19 ffvelrn 5836 . . . . . . . . . . 11  |-  ( ( T : ~H --> ~H  /\  y  e.  ~H )  ->  ( T `  y
)  e.  ~H )
2018, 19anim12dan 833 . . . . . . . . . 10  |-  ( ( T : ~H --> ~H  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  e.  ~H  /\  ( T `
 y )  e. 
~H ) )
214, 20sylan 471 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  e.  ~H  /\  ( T `
 y )  e. 
~H ) )
22 normlem9at 24474 . . . . . . . . 9  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( ( T `
 x )  -h  ( T `  y
) )  .ih  (
( T `  x
)  -h  ( T `
 y ) ) )  =  ( ( ( ( T `  x )  .ih  ( T `  x )
)  +  ( ( T `  y ) 
.ih  ( T `  y ) ) )  -  ( ( ( T `  x ) 
.ih  ( T `  y ) )  +  ( ( T `  y )  .ih  ( T `  x )
) ) ) )
2321, 22syl 16 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( T `  x
)  -h  ( T `
 y ) ) 
.ih  ( ( T `
 x )  -h  ( T `  y
) ) )  =  ( ( ( ( T `  x ) 
.ih  ( T `  x ) )  +  ( ( T `  y )  .ih  ( T `  y )
) )  -  (
( ( T `  x )  .ih  ( T `  y )
)  +  ( ( T `  y ) 
.ih  ( T `  x ) ) ) ) )
24 normlem9at 24474 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( x  -h  y )  .ih  (
x  -h  y ) )  =  ( ( ( x  .ih  x
)  +  ( y 
.ih  y ) )  -  ( ( x 
.ih  y )  +  ( y  .ih  x
) ) ) )
2524adantl 466 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
x  -h  y ) 
.ih  ( x  -h  y ) )  =  ( ( ( x 
.ih  x )  +  ( y  .ih  y
) )  -  (
( x  .ih  y
)  +  ( y 
.ih  x ) ) ) )
2617, 23, 253eqtr4rd 2481 . . . . . . 7  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
x  -h  y ) 
.ih  ( x  -h  y ) )  =  ( ( ( T `
 x )  -h  ( T `  y
) )  .ih  (
( T `  x
)  -h  ( T `
 y ) ) ) )
2726eqeq1d 2446 . . . . . 6  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( x  -h  y
)  .ih  ( x  -h  y ) )  =  0  <->  ( ( ( T `  x )  -h  ( T `  y ) )  .ih  ( ( T `  x )  -h  ( T `  y )
) )  =  0 ) )
28 hvsubcl 24370 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  -h  y
)  e.  ~H )
29 his6 24452 . . . . . . . . 9  |-  ( ( x  -h  y )  e.  ~H  ->  (
( ( x  -h  y )  .ih  (
x  -h  y ) )  =  0  <->  (
x  -h  y )  =  0h ) )
3028, 29syl 16 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( x  -h  y )  .ih  ( x  -h  y
) )  =  0  <-> 
( x  -h  y
)  =  0h )
)
31 hvsubeq0 24421 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( x  -h  y )  =  0h  <->  x  =  y ) )
3230, 31bitrd 253 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( x  -h  y )  .ih  ( x  -h  y
) )  =  0  <-> 
x  =  y ) )
3332adantl 466 . . . . . 6  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( x  -h  y
)  .ih  ( x  -h  y ) )  =  0  <->  x  =  y
) )
34 hvsubcl 24370 . . . . . . . . 9  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( T `  x )  -h  ( T `  y )
)  e.  ~H )
35 his6 24452 . . . . . . . . 9  |-  ( ( ( T `  x
)  -h  ( T `
 y ) )  e.  ~H  ->  (
( ( ( T `
 x )  -h  ( T `  y
) )  .ih  (
( T `  x
)  -h  ( T `
 y ) ) )  =  0  <->  (
( T `  x
)  -h  ( T `
 y ) )  =  0h ) )
3634, 35syl 16 . . . . . . . 8  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( ( ( T `  x )  -h  ( T `  y ) )  .ih  ( ( T `  x )  -h  ( T `  y )
) )  =  0  <-> 
( ( T `  x )  -h  ( T `  y )
)  =  0h )
)
37 hvsubeq0 24421 . . . . . . . 8  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( ( T `
 x )  -h  ( T `  y
) )  =  0h  <->  ( T `  x )  =  ( T `  y ) ) )
3836, 37bitrd 253 . . . . . . 7  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( ( ( T `  x )  -h  ( T `  y ) )  .ih  ( ( T `  x )  -h  ( T `  y )
) )  =  0  <-> 
( T `  x
)  =  ( T `
 y ) ) )
3921, 38syl 16 . . . . . 6  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( ( T `  x )  -h  ( T `  y )
)  .ih  ( ( T `  x )  -h  ( T `  y
) ) )  =  0  <->  ( T `  x )  =  ( T `  y ) ) )
4027, 33, 393bitr3rd 284 . . . . 5  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  =  ( T `  y )  <->  x  =  y ) )
4140biimpd 207 . . . 4  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  =  ( T `  y )  ->  x  =  y ) )
4241ralrimivva 2803 . . 3  |-  ( T  e.  UniOp  ->  A. x  e.  ~H  A. y  e. 
~H  ( ( T `
 x )  =  ( T `  y
)  ->  x  =  y ) )
43 dff13 5966 . . 3  |-  ( T : ~H -1-1-> ~H  <->  ( T : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( T `
 x )  =  ( T `  y
)  ->  x  =  y ) ) )
444, 42, 43sylanbrc 664 . 2  |-  ( T  e.  UniOp  ->  T : ~H
-1-1-> ~H )
45 df-f1o 5420 . 2  |-  ( T : ~H -1-1-onto-> ~H  <->  ( T : ~H
-1-1-> ~H  /\  T : ~H -onto-> ~H ) )
4644, 2, 45sylanbrc 664 1  |-  ( T  e.  UniOp  ->  T : ~H
-1-1-onto-> ~H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   -->wf 5409   -1-1->wf1 5410   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6086   0cc0 9274    + caddc 9277    - cmin 9587   ~Hchil 24272    .ih csp 24275   0hc0v 24277    -h cmv 24278   UniOpcuo 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-hilex 24352  ax-hfvadd 24353  ax-hvcom 24354  ax-hvass 24355  ax-hv0cl 24356  ax-hvaddid 24357  ax-hfvmul 24358  ax-hvmulid 24359  ax-hvdistr2 24362  ax-hvmul0 24363  ax-hfi 24432  ax-his1 24435  ax-his2 24436  ax-his3 24437  ax-his4 24438
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-2 10372  df-cj 12580  df-re 12581  df-im 12582  df-hvsub 24324  df-unop 25198
This theorem is referenced by:  unopnorm  25272  cnvunop  25273  unopadj  25274  unoplin  25275  counop  25276  unopbd  25370
  Copyright terms: Public domain W3C validator