MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnfdomd Structured version   Visualization version   GIF version

Theorem unirnfdomd 9268
Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
unirnfdomd.1 (𝜑𝐹:𝑇⟶Fin)
unirnfdomd.2 (𝜑 → ¬ 𝑇 ∈ Fin)
unirnfdomd.3 (𝜑𝑇𝑉)
Assertion
Ref Expression
unirnfdomd (𝜑 ran 𝐹𝑇)

Proof of Theorem unirnfdomd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unirnfdomd.1 . . . . . . . 8 (𝜑𝐹:𝑇⟶Fin)
2 ffn 5958 . . . . . . . 8 (𝐹:𝑇⟶Fin → 𝐹 Fn 𝑇)
31, 2syl 17 . . . . . . 7 (𝜑𝐹 Fn 𝑇)
4 unirnfdomd.3 . . . . . . 7 (𝜑𝑇𝑉)
5 fnex 6386 . . . . . . 7 ((𝐹 Fn 𝑇𝑇𝑉) → 𝐹 ∈ V)
63, 4, 5syl2anc 691 . . . . . 6 (𝜑𝐹 ∈ V)
7 rnexg 6990 . . . . . 6 (𝐹 ∈ V → ran 𝐹 ∈ V)
86, 7syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ V)
9 frn 5966 . . . . . . 7 (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin)
10 dfss3 3558 . . . . . . 7 (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
119, 10sylib 207 . . . . . 6 (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
12 isfinite 8432 . . . . . . . 8 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
13 sdomdom 7869 . . . . . . . 8 (𝑥 ≺ ω → 𝑥 ≼ ω)
1412, 13sylbi 206 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ≼ ω)
1514ralimi 2936 . . . . . 6 (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
161, 11, 153syl 18 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
17 unidom 9244 . . . . 5 ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ran 𝐹 ≼ (ran 𝐹 × ω))
188, 16, 17syl2anc 691 . . . 4 (𝜑 ran 𝐹 ≼ (ran 𝐹 × ω))
19 fnrndomg 9239 . . . . . 6 (𝑇𝑉 → (𝐹 Fn 𝑇 → ran 𝐹𝑇))
204, 3, 19sylc 63 . . . . 5 (𝜑 → ran 𝐹𝑇)
21 omex 8423 . . . . . 6 ω ∈ V
2221xpdom1 7944 . . . . 5 (ran 𝐹𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
2320, 22syl 17 . . . 4 (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
24 domtr 7895 . . . 4 (( ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ran 𝐹 ≼ (𝑇 × ω))
2518, 23, 24syl2anc 691 . . 3 (𝜑 ran 𝐹 ≼ (𝑇 × ω))
26 unirnfdomd.2 . . . . 5 (𝜑 → ¬ 𝑇 ∈ Fin)
27 infinf 9267 . . . . . 6 (𝑇𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
284, 27syl 17 . . . . 5 (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
2926, 28mpbid 221 . . . 4 (𝜑 → ω ≼ 𝑇)
30 xpdom2g 7941 . . . 4 ((𝑇𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇))
314, 29, 30syl2anc 691 . . 3 (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇))
32 domtr 7895 . . 3 (( ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ran 𝐹 ≼ (𝑇 × 𝑇))
3325, 31, 32syl2anc 691 . 2 (𝜑 ran 𝐹 ≼ (𝑇 × 𝑇))
34 infxpidm 9263 . . 3 (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇)
3529, 34syl 17 . 2 (𝜑 → (𝑇 × 𝑇) ≈ 𝑇)
36 domentr 7901 . 2 (( ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ran 𝐹𝑇)
3733, 35, 36syl2anc 691 1 (𝜑 ran 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wcel 1977  wral 2896  Vcvv 3173  wss 3540   cuni 4372   class class class wbr 4583   × cxp 5036  ran crn 5039   Fn wfn 5799  wf 5800  ωcom 6957  cen 7838  cdom 7839  csdm 7840  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822
This theorem is referenced by:  acsdomd  17004
  Copyright terms: Public domain W3C validator