Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgrres1lem Structured version   Visualization version   GIF version

Theorem umgrres1lem 40529
 Description: Lemma for umgrres1 40533. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
umgrres1lem ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉   𝐹,𝑝   𝐺,𝑝   𝑁,𝑝   𝑉,𝑝,𝑒
Allowed substitution hints:   𝐸(𝑝)   𝐹(𝑒)

Proof of Theorem umgrres1lem
StepHypRef Expression
1 rnresi 5398 . 2 ran ( I ↾ 𝐹) = 𝐹
2 upgrres1.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
3 simpr 476 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → 𝑒𝐸)
43adantr 480 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝐸)
5 umgruhgr 25770 . . . . . . . . . 10 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph )
6 upgrres1.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
76eleq2i 2680 . . . . . . . . . . 11 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
87biimpi 205 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
9 edguhgr 25803 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
10 elpwi 4117 . . . . . . . . . . . 12 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒 ⊆ (Vtx‘𝐺))
11 upgrres1.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
1210, 11syl6sseqr 3615 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 (Vtx‘𝐺) → 𝑒𝑉)
139, 12syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒𝑉)
145, 8, 13syl2an 493 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑒𝐸) → 𝑒𝑉)
1514ad4ant13 1284 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒𝑉)
16 simpr 476 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑁𝑒)
17 elpwdifsn 40312 . . . . . . . 8 ((𝑒𝐸𝑒𝑉𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
184, 15, 16, 17syl3anc 1318 . . . . . . 7 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) ∧ 𝑁𝑒) → 𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁}))
1918ex 449 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑒𝐸) → (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2019ralrimiva 2949 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
21 rabss 3642 . . . . 5 ({𝑒𝐸𝑁𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}) ↔ ∀𝑒𝐸 (𝑁𝑒𝑒 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2220, 21sylibr 223 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ⊆ 𝒫 (𝑉 ∖ {𝑁}))
232, 22syl5eqss 3612 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ 𝒫 (𝑉 ∖ {𝑁}))
24 elrabi 3328 . . . . . . 7 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝𝐸)
2524, 6syl6eleq 2698 . . . . . 6 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → 𝑝 ∈ (Edg‘𝐺))
26 edgumgr 25809 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (𝑝 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝑝) = 2))
2726simprd 478 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑝 ∈ (Edg‘𝐺)) → (#‘𝑝) = 2)
2827ex 449 . . . . . . 7 (𝐺 ∈ UMGraph → (𝑝 ∈ (Edg‘𝐺) → (#‘𝑝) = 2))
2928adantr 480 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑝 ∈ (Edg‘𝐺) → (#‘𝑝) = 2))
3025, 29syl5com 31 . . . . 5 (𝑝 ∈ {𝑒𝐸𝑁𝑒} → ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (#‘𝑝) = 2))
3130, 2eleq2s 2706 . . . 4 (𝑝𝐹 → ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (#‘𝑝) = 2))
3231impcom 445 . . 3 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑝𝐹) → (#‘𝑝) = 2)
3323, 32ssrabdv 3644 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})
341, 33syl5eqss 3612 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∉ wnel 2781  ∀wral 2896  {crab 2900   ∖ cdif 3537   ⊆ wss 3540  𝒫 cpw 4108  {csn 4125   I cid 4948  ran crn 5039   ↾ cres 5040  ‘cfv 5804  2c2 10947  #chash 12979  Vtxcvtx 25673   UHGraph cuhgr 25722   UMGraph cumgr 25748  Edgcedga 25792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-uhgr 25724  df-upgr 25749  df-umgr 25750  df-edga 25793 This theorem is referenced by:  umgrres1  40533  usgrres1  40534
 Copyright terms: Public domain W3C validator