Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ublbneg | Structured version Visualization version GIF version |
Description: The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
ublbneg | ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4586 | . . . . 5 ⊢ (𝑏 = 𝑦 → (𝑏 ≤ 𝑎 ↔ 𝑦 ≤ 𝑎)) | |
2 | 1 | cbvralv 3147 | . . . 4 ⊢ (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
3 | 2 | rexbii 3023 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
4 | breq2 4587 | . . . . 5 ⊢ (𝑎 = 𝑥 → (𝑦 ≤ 𝑎 ↔ 𝑦 ≤ 𝑥)) | |
5 | 4 | ralbidv 2969 | . . . 4 ⊢ (𝑎 = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
6 | 5 | cbvrexv 3148 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
7 | 3, 6 | bitri 263 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
8 | renegcl 10223 | . . . 4 ⊢ (𝑎 ∈ ℝ → -𝑎 ∈ ℝ) | |
9 | elrabi 3328 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → 𝑦 ∈ ℝ) | |
10 | negeq 10152 | . . . . . . . . . . . 12 ⊢ (𝑧 = 𝑦 → -𝑧 = -𝑦) | |
11 | 10 | eleq1d 2672 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑦 → (-𝑧 ∈ 𝐴 ↔ -𝑦 ∈ 𝐴)) |
12 | 11 | elrab3 3332 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ -𝑦 ∈ 𝐴)) |
13 | 12 | biimpd 218 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴)) |
14 | 9, 13 | mpcom 37 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴) |
15 | breq1 4586 | . . . . . . . . 9 ⊢ (𝑏 = -𝑦 → (𝑏 ≤ 𝑎 ↔ -𝑦 ≤ 𝑎)) | |
16 | 15 | rspcv 3278 | . . . . . . . 8 ⊢ (-𝑦 ∈ 𝐴 → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
17 | 14, 16 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
19 | lenegcon1 10411 | . . . . . . 7 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) | |
20 | 9, 19 | sylan2 490 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) |
21 | 18, 20 | sylibrd 248 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑎 ≤ 𝑦)) |
22 | 21 | ralrimdva 2952 | . . . 4 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
23 | breq1 4586 | . . . . . 6 ⊢ (𝑥 = -𝑎 → (𝑥 ≤ 𝑦 ↔ -𝑎 ≤ 𝑦)) | |
24 | 23 | ralbidv 2969 | . . . . 5 ⊢ (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
25 | 24 | rspcev 3282 | . . . 4 ⊢ ((-𝑎 ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
26 | 8, 22, 25 | syl6an 566 | . . 3 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦)) |
27 | 26 | rexlimiv 3009 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
28 | 7, 27 | sylbir 224 | 1 ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 {crab 2900 class class class wbr 4583 ℝcr 9814 ≤ cle 9954 -cneg 10146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 |
This theorem is referenced by: supminf 11651 |
Copyright terms: Public domain | W3C validator |