MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcon Structured version   Visualization version   GIF version

Theorem txcon 21302
Description: The topological product of two connected spaces is connected. (Contributed by Mario Carneiro, 29-Mar-2015.)
Assertion
Ref Expression
txcon ((𝑅 ∈ Con ∧ 𝑆 ∈ Con) → (𝑅 ×t 𝑆) ∈ Con)

Proof of Theorem txcon
Dummy variables 𝑤 𝑎 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 contop 21030 . . 3 (𝑅 ∈ Con → 𝑅 ∈ Top)
2 contop 21030 . . 3 (𝑆 ∈ Con → 𝑆 ∈ Top)
3 txtop 21182 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 493 . 2 ((𝑅 ∈ Con ∧ 𝑆 ∈ Con) → (𝑅 ×t 𝑆) ∈ Top)
5 neq0 3889 . . . . . . 7 𝑥 = ∅ ↔ ∃𝑧 𝑧𝑥)
6 inss1 3795 . . . . . . . . . . . 12 ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆))) ⊆ (𝑅 ×t 𝑆)
7 simplr 788 . . . . . . . . . . . 12 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ 𝑧𝑥) → 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆))))
86, 7sseldi 3566 . . . . . . . . . . 11 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ 𝑧𝑥) → 𝑥 ∈ (𝑅 ×t 𝑆))
9 elssuni 4403 . . . . . . . . . . 11 (𝑥 ∈ (𝑅 ×t 𝑆) → 𝑥 (𝑅 ×t 𝑆))
108, 9syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ 𝑧𝑥) → 𝑥 (𝑅 ×t 𝑆))
11 simprr 792 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑤 (𝑅 ×t 𝑆))
12 simplll 794 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑅 ∈ Con)
1312, 1syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑅 ∈ Top)
14 simpllr 795 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑆 ∈ Con)
1514, 2syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑆 ∈ Top)
16 eqid 2610 . . . . . . . . . . . . . . . . 17 𝑅 = 𝑅
17 eqid 2610 . . . . . . . . . . . . . . . . 17 𝑆 = 𝑆
1816, 17txuni 21205 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
1913, 15, 18syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
2011, 19eleqtrrd 2691 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑤 ∈ ( 𝑅 × 𝑆))
21 1st2nd2 7096 . . . . . . . . . . . . . 14 (𝑤 ∈ ( 𝑅 × 𝑆) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
2220, 21syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
23 xp2nd 7090 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ( 𝑅 × 𝑆) → (2nd𝑤) ∈ 𝑆)
2420, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (2nd𝑤) ∈ 𝑆)
25 eqid 2610 . . . . . . . . . . . . . . . . . 18 (𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩) = (𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩)
2625mptpreima 5545 . . . . . . . . . . . . . . . . 17 ((𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩) “ 𝑥) = {𝑎 𝑆 ∣ ⟨(1st𝑤), 𝑎⟩ ∈ 𝑥}
2717toptopon 20548 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
2815, 27sylib 207 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑆 ∈ (TopOn‘ 𝑆))
2916toptopon 20548 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
3013, 29sylib 207 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑅 ∈ (TopOn‘ 𝑅))
31 xp1st 7089 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ( 𝑅 × 𝑆) → (1st𝑤) ∈ 𝑅)
3220, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (1st𝑤) ∈ 𝑅)
3328, 30, 32cnmptc 21275 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (𝑎 𝑆 ↦ (1st𝑤)) ∈ (𝑆 Cn 𝑅))
3428cnmptid 21274 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (𝑎 𝑆𝑎) ∈ (𝑆 Cn 𝑆))
3528, 33, 34cnmpt1t 21278 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩) ∈ (𝑆 Cn (𝑅 ×t 𝑆)))
36 simplr 788 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆))))
376, 36sseldi 3566 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑥 ∈ (𝑅 ×t 𝑆))
38 cnima 20879 . . . . . . . . . . . . . . . . . 18 (((𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩) ∈ (𝑆 Cn (𝑅 ×t 𝑆)) ∧ 𝑥 ∈ (𝑅 ×t 𝑆)) → ((𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩) “ 𝑥) ∈ 𝑆)
3935, 37, 38syl2anc 691 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ((𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩) “ 𝑥) ∈ 𝑆)
4026, 39syl5eqelr 2693 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → {𝑎 𝑆 ∣ ⟨(1st𝑤), 𝑎⟩ ∈ 𝑥} ∈ 𝑆)
41 simprl 790 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑧𝑥)
42 elunii 4377 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧𝑥𝑥 ∈ (𝑅 ×t 𝑆)) → 𝑧 (𝑅 ×t 𝑆))
4341, 37, 42syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑧 (𝑅 ×t 𝑆))
4443, 19eleqtrrd 2691 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑧 ∈ ( 𝑅 × 𝑆))
45 xp2nd 7090 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ( 𝑅 × 𝑆) → (2nd𝑧) ∈ 𝑆)
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (2nd𝑧) ∈ 𝑆)
47 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩) = (𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩)
4847mptpreima 5545 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩) “ 𝑥) = {𝑎 𝑅 ∣ ⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥}
4930cnmptid 21274 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (𝑎 𝑅𝑎) ∈ (𝑅 Cn 𝑅))
5030, 28, 46cnmptc 21275 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (𝑎 𝑅 ↦ (2nd𝑧)) ∈ (𝑅 Cn 𝑆))
5130, 49, 50cnmpt1t 21278 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)))
52 cnima 20879 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)) ∧ 𝑥 ∈ (𝑅 ×t 𝑆)) → ((𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩) “ 𝑥) ∈ 𝑅)
5351, 37, 52syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ((𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩) “ 𝑥) ∈ 𝑅)
5448, 53syl5eqelr 2693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → {𝑎 𝑅 ∣ ⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥} ∈ 𝑅)
55 xp1st 7089 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ( 𝑅 × 𝑆) → (1st𝑧) ∈ 𝑅)
5644, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (1st𝑧) ∈ 𝑅)
57 1st2nd2 7096 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ( 𝑅 × 𝑆) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
5844, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
5958, 41eqeltrrd 2689 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ 𝑥)
60 opeq1 4340 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (1st𝑧) → ⟨𝑎, (2nd𝑧)⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
6160eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (1st𝑧) → (⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ 𝑥))
6261rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑧) ∈ 𝑅 ∧ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ 𝑥) → ∃𝑎 𝑅𝑎, (2nd𝑧)⟩ ∈ 𝑥)
6356, 59, 62syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ∃𝑎 𝑅𝑎, (2nd𝑧)⟩ ∈ 𝑥)
64 rabn0 3912 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑎 𝑅 ∣ ⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥} ≠ ∅ ↔ ∃𝑎 𝑅𝑎, (2nd𝑧)⟩ ∈ 𝑥)
6563, 64sylibr 223 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → {𝑎 𝑅 ∣ ⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥} ≠ ∅)
66 inss2 3796 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆))) ⊆ (Clsd‘(𝑅 ×t 𝑆))
6766, 36sseldi 3566 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑥 ∈ (Clsd‘(𝑅 ×t 𝑆)))
68 cnclima 20882 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)) ∧ 𝑥 ∈ (Clsd‘(𝑅 ×t 𝑆))) → ((𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩) “ 𝑥) ∈ (Clsd‘𝑅))
6951, 67, 68syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ((𝑎 𝑅 ↦ ⟨𝑎, (2nd𝑧)⟩) “ 𝑥) ∈ (Clsd‘𝑅))
7048, 69syl5eqelr 2693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → {𝑎 𝑅 ∣ ⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥} ∈ (Clsd‘𝑅))
7116, 12, 54, 65, 70conclo 21028 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → {𝑎 𝑅 ∣ ⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥} = 𝑅)
7232, 71eleqtrrd 2691 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (1st𝑤) ∈ {𝑎 𝑅 ∣ ⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥})
73 opeq1 4340 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (1st𝑤) → ⟨𝑎, (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑧)⟩)
7473eleq1d 2672 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (1st𝑤) → (⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥 ↔ ⟨(1st𝑤), (2nd𝑧)⟩ ∈ 𝑥))
7574elrab 3331 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑤) ∈ {𝑎 𝑅 ∣ ⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥} ↔ ((1st𝑤) ∈ 𝑅 ∧ ⟨(1st𝑤), (2nd𝑧)⟩ ∈ 𝑥))
7675simprbi 479 . . . . . . . . . . . . . . . . . . 19 ((1st𝑤) ∈ {𝑎 𝑅 ∣ ⟨𝑎, (2nd𝑧)⟩ ∈ 𝑥} → ⟨(1st𝑤), (2nd𝑧)⟩ ∈ 𝑥)
7772, 76syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ⟨(1st𝑤), (2nd𝑧)⟩ ∈ 𝑥)
78 opeq2 4341 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (2nd𝑧) → ⟨(1st𝑤), 𝑎⟩ = ⟨(1st𝑤), (2nd𝑧)⟩)
7978eleq1d 2672 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (2nd𝑧) → (⟨(1st𝑤), 𝑎⟩ ∈ 𝑥 ↔ ⟨(1st𝑤), (2nd𝑧)⟩ ∈ 𝑥))
8079rspcev 3282 . . . . . . . . . . . . . . . . . 18 (((2nd𝑧) ∈ 𝑆 ∧ ⟨(1st𝑤), (2nd𝑧)⟩ ∈ 𝑥) → ∃𝑎 𝑆⟨(1st𝑤), 𝑎⟩ ∈ 𝑥)
8146, 77, 80syl2anc 691 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ∃𝑎 𝑆⟨(1st𝑤), 𝑎⟩ ∈ 𝑥)
82 rabn0 3912 . . . . . . . . . . . . . . . . 17 ({𝑎 𝑆 ∣ ⟨(1st𝑤), 𝑎⟩ ∈ 𝑥} ≠ ∅ ↔ ∃𝑎 𝑆⟨(1st𝑤), 𝑎⟩ ∈ 𝑥)
8381, 82sylibr 223 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → {𝑎 𝑆 ∣ ⟨(1st𝑤), 𝑎⟩ ∈ 𝑥} ≠ ∅)
84 cnclima 20882 . . . . . . . . . . . . . . . . . 18 (((𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩) ∈ (𝑆 Cn (𝑅 ×t 𝑆)) ∧ 𝑥 ∈ (Clsd‘(𝑅 ×t 𝑆))) → ((𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩) “ 𝑥) ∈ (Clsd‘𝑆))
8535, 67, 84syl2anc 691 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ((𝑎 𝑆 ↦ ⟨(1st𝑤), 𝑎⟩) “ 𝑥) ∈ (Clsd‘𝑆))
8626, 85syl5eqelr 2693 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → {𝑎 𝑆 ∣ ⟨(1st𝑤), 𝑎⟩ ∈ 𝑥} ∈ (Clsd‘𝑆))
8717, 14, 40, 83, 86conclo 21028 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → {𝑎 𝑆 ∣ ⟨(1st𝑤), 𝑎⟩ ∈ 𝑥} = 𝑆)
8824, 87eleqtrrd 2691 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → (2nd𝑤) ∈ {𝑎 𝑆 ∣ ⟨(1st𝑤), 𝑎⟩ ∈ 𝑥})
89 opeq2 4341 . . . . . . . . . . . . . . . . 17 (𝑎 = (2nd𝑤) → ⟨(1st𝑤), 𝑎⟩ = ⟨(1st𝑤), (2nd𝑤)⟩)
9089eleq1d 2672 . . . . . . . . . . . . . . . 16 (𝑎 = (2nd𝑤) → (⟨(1st𝑤), 𝑎⟩ ∈ 𝑥 ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ 𝑥))
9190elrab 3331 . . . . . . . . . . . . . . 15 ((2nd𝑤) ∈ {𝑎 𝑆 ∣ ⟨(1st𝑤), 𝑎⟩ ∈ 𝑥} ↔ ((2nd𝑤) ∈ 𝑆 ∧ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ 𝑥))
9291simprbi 479 . . . . . . . . . . . . . 14 ((2nd𝑤) ∈ {𝑎 𝑆 ∣ ⟨(1st𝑤), 𝑎⟩ ∈ 𝑥} → ⟨(1st𝑤), (2nd𝑤)⟩ ∈ 𝑥)
9388, 92syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → ⟨(1st𝑤), (2nd𝑤)⟩ ∈ 𝑥)
9422, 93eqeltrd 2688 . . . . . . . . . . . 12 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ (𝑧𝑥𝑤 (𝑅 ×t 𝑆))) → 𝑤𝑥)
9594expr 641 . . . . . . . . . . 11 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ 𝑧𝑥) → (𝑤 (𝑅 ×t 𝑆) → 𝑤𝑥))
9695ssrdv 3574 . . . . . . . . . 10 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ 𝑧𝑥) → (𝑅 ×t 𝑆) ⊆ 𝑥)
9710, 96eqssd 3585 . . . . . . . . 9 ((((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) ∧ 𝑧𝑥) → 𝑥 = (𝑅 ×t 𝑆))
9897ex 449 . . . . . . . 8 (((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) → (𝑧𝑥𝑥 = (𝑅 ×t 𝑆)))
9998exlimdv 1848 . . . . . . 7 (((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) → (∃𝑧 𝑧𝑥𝑥 = (𝑅 ×t 𝑆)))
1005, 99syl5bi 231 . . . . . 6 (((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) → (¬ 𝑥 = ∅ → 𝑥 = (𝑅 ×t 𝑆)))
101100orrd 392 . . . . 5 (((𝑅 ∈ Con ∧ 𝑆 ∈ Con) ∧ 𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆)))) → (𝑥 = ∅ ∨ 𝑥 = (𝑅 ×t 𝑆)))
102101ex 449 . . . 4 ((𝑅 ∈ Con ∧ 𝑆 ∈ Con) → (𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆))) → (𝑥 = ∅ ∨ 𝑥 = (𝑅 ×t 𝑆))))
103 vex 3176 . . . . 5 𝑥 ∈ V
104103elpr 4146 . . . 4 (𝑥 ∈ {∅, (𝑅 ×t 𝑆)} ↔ (𝑥 = ∅ ∨ 𝑥 = (𝑅 ×t 𝑆)))
105102, 104syl6ibr 241 . . 3 ((𝑅 ∈ Con ∧ 𝑆 ∈ Con) → (𝑥 ∈ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆))) → 𝑥 ∈ {∅, (𝑅 ×t 𝑆)}))
106105ssrdv 3574 . 2 ((𝑅 ∈ Con ∧ 𝑆 ∈ Con) → ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆))) ⊆ {∅, (𝑅 ×t 𝑆)})
107 eqid 2610 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
108107iscon2 21027 . 2 ((𝑅 ×t 𝑆) ∈ Con ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ((𝑅 ×t 𝑆) ∩ (Clsd‘(𝑅 ×t 𝑆))) ⊆ {∅, (𝑅 ×t 𝑆)}))
1094, 106, 108sylanbrc 695 1 ((𝑅 ∈ Con ∧ 𝑆 ∈ Con) → (𝑅 ×t 𝑆) ∈ Con)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  {crab 2900  cin 3539  wss 3540  c0 3874  {cpr 4127  cop 4131   cuni 4372  cmpt 4643   × cxp 5036  ccnv 5037  cima 5041  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Topctop 20517  TopOnctopon 20518  Clsdccld 20630   Cn ccn 20838  Conccon 21024   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-cn 20841  df-cnp 20842  df-con 21025  df-tx 21175
This theorem is referenced by:  cvmlift2lem9  30547  cvmlift2lem13  30551
  Copyright terms: Public domain W3C validator