Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglowdim1i Structured version   Visualization version   GIF version

Theorem tglowdim1i 25196
 Description: Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019.)
Hypotheses
Ref Expression
tglowdim1.p 𝑃 = (Base‘𝐺)
tglowdim1.d = (dist‘𝐺)
tglowdim1.i 𝐼 = (Itv‘𝐺)
tglowdim1.g (𝜑𝐺 ∈ TarskiG)
tglowdim1.1 (𝜑 → 2 ≤ (#‘𝑃))
tglowdim1i.1 (𝜑𝑋𝑃)
Assertion
Ref Expression
tglowdim1i (𝜑 → ∃𝑦𝑃 𝑋𝑦)
Distinct variable groups:   𝑦,𝑃   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦)   𝐼(𝑦)   (𝑦)

Proof of Theorem tglowdim1i
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglowdim1.p . . . . 5 𝑃 = (Base‘𝐺)
2 tglowdim1.d . . . . 5 = (dist‘𝐺)
3 tglowdim1.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tglowdim1.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) → 𝐺 ∈ TarskiG)
6 tglowdim1.1 . . . . . 6 (𝜑 → 2 ≤ (#‘𝑃))
76adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) → 2 ≤ (#‘𝑃))
81, 2, 3, 5, 7tglowdim1 25195 . . . 4 ((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) → ∃𝑎𝑃𝑏𝑃 𝑎𝑏)
9 simpllr 795 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → ∀𝑦𝑃 𝑋 = 𝑦)
10 simplr 788 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → 𝑎𝑃)
11 eqeq2 2621 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑋 = 𝑦𝑋 = 𝑎))
1211rspccva 3281 . . . . . . . . 9 ((∀𝑦𝑃 𝑋 = 𝑦𝑎𝑃) → 𝑋 = 𝑎)
139, 10, 12syl2anc 691 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → 𝑋 = 𝑎)
14 eqeq2 2621 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝑋 = 𝑦𝑋 = 𝑏))
1514rspccva 3281 . . . . . . . . 9 ((∀𝑦𝑃 𝑋 = 𝑦𝑏𝑃) → 𝑋 = 𝑏)
169, 15sylancom 698 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → 𝑋 = 𝑏)
1713, 16eqtr3d 2646 . . . . . . 7 ((((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → 𝑎 = 𝑏)
18 nne 2786 . . . . . . 7 𝑎𝑏𝑎 = 𝑏)
1917, 18sylibr 223 . . . . . 6 ((((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) ∧ 𝑎𝑃) ∧ 𝑏𝑃) → ¬ 𝑎𝑏)
2019nrexdv 2984 . . . . 5 (((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) ∧ 𝑎𝑃) → ¬ ∃𝑏𝑃 𝑎𝑏)
2120nrexdv 2984 . . . 4 ((𝜑 ∧ ∀𝑦𝑃 𝑋 = 𝑦) → ¬ ∃𝑎𝑃𝑏𝑃 𝑎𝑏)
228, 21pm2.65da 598 . . 3 (𝜑 → ¬ ∀𝑦𝑃 𝑋 = 𝑦)
23 rexnal 2978 . . 3 (∃𝑦𝑃 ¬ 𝑋 = 𝑦 ↔ ¬ ∀𝑦𝑃 𝑋 = 𝑦)
2422, 23sylibr 223 . 2 (𝜑 → ∃𝑦𝑃 ¬ 𝑋 = 𝑦)
25 df-ne 2782 . . 3 (𝑋𝑦 ↔ ¬ 𝑋 = 𝑦)
2625rexbii 3023 . 2 (∃𝑦𝑃 𝑋𝑦 ↔ ∃𝑦𝑃 ¬ 𝑋 = 𝑦)
2724, 26sylibr 223 1 (𝜑 → ∃𝑦𝑃 𝑋𝑦)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804   ≤ cle 9954  2c2 10947  #chash 12979  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980 This theorem is referenced by:  colline  25344
 Copyright terms: Public domain W3C validator