Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subumgredg2 Structured version   Visualization version   GIF version

Theorem subumgredg2 40509
 Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.)
Hypotheses
Ref Expression
subumgredg2.v 𝑉 = (Vtx‘𝑆)
subumgredg2.i 𝐼 = (iEdg‘𝑆)
Assertion
Ref Expression
subumgredg2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (#‘𝑒) = 2})
Distinct variable groups:   𝑒,𝐼   𝑒,𝑉   𝑒,𝑋
Allowed substitution hints:   𝑆(𝑒)   𝐺(𝑒)

Proof of Theorem subumgredg2
StepHypRef Expression
1 subumgredg2.v . . . 4 𝑉 = (Vtx‘𝑆)
2 subumgredg2.i . . . 4 𝐼 = (iEdg‘𝑆)
3 umgruhgr 25770 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph )
433ad2ant2 1076 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph )
5 simp1 1054 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺)
6 simp3 1056 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
71, 2, 4, 5, 6subgruhgredgd 40508 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
8 eqid 2610 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
98uhgrfun 25732 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
103, 9syl 17 . . . . . . 7 (𝐺 ∈ UMGraph → Fun (iEdg‘𝐺))
11103ad2ant2 1076 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺))
12 eqid 2610 . . . . . . . . 9 (Vtx‘𝑆) = (Vtx‘𝑆)
13 eqid 2610 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
14 eqid 2610 . . . . . . . . 9 (Edg‘𝑆) = (Edg‘𝑆)
1512, 13, 2, 8, 14subgrprop2 40498 . . . . . . . 8 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1615simp2d 1067 . . . . . . 7 (𝑆 SubGraph 𝐺𝐼 ⊆ (iEdg‘𝐺))
17163ad2ant1 1075 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺))
18 funssfv 6119 . . . . . . 7 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼𝑋))
1918eqcomd 2616 . . . . . 6 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2011, 17, 6, 19syl3anc 1318 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2120fveq2d 6107 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (#‘(𝐼𝑋)) = (#‘((iEdg‘𝐺)‘𝑋)))
22 simp2 1055 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph )
232dmeqi 5247 . . . . . . . . 9 dom 𝐼 = dom (iEdg‘𝑆)
2423eleq2i 2680 . . . . . . . 8 (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝑆))
25 subgreldmiedg 40507 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
2625ex 449 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺)))
2724, 26syl5bi 231 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺)))
2827a1d 25 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺))))
29283imp 1249 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺))
3013, 8umgredg2 25766 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → (#‘((iEdg‘𝐺)‘𝑋)) = 2)
3122, 29, 30syl2anc 691 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (#‘((iEdg‘𝐺)‘𝑋)) = 2)
3221, 31eqtrd 2644 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (#‘(𝐼𝑋)) = 2)
33 fveq2 6103 . . . . 5 (𝑒 = (𝐼𝑋) → (#‘𝑒) = (#‘(𝐼𝑋)))
3433eqeq1d 2612 . . . 4 (𝑒 = (𝐼𝑋) → ((#‘𝑒) = 2 ↔ (#‘(𝐼𝑋)) = 2))
3534elrab 3331 . . 3 ((𝐼𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑒) = 2} ↔ ((𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐼𝑋)) = 2))
367, 32, 35sylanbrc 695 . 2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑒) = 2})
37 prprrab 13112 . 2 {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑒) = 2} = {𝑒 ∈ 𝒫 𝑉 ∣ (#‘𝑒) = 2}
3836, 37syl6eleq 2698 1 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (#‘𝑒) = 2})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  dom cdm 5038  Fun wfun 5798  ‘cfv 5804  2c2 10947  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722   UMGraph cumgr 25748  Edgcedga 25792   SubGraph csubgr 40491 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-uhgr 25724  df-upgr 25749  df-umgr 25750  df-edga 25793  df-subgr 40492 This theorem is referenced by:  subumgr  40512  subusgr  40513
 Copyright terms: Public domain W3C validator