MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem1 Structured version   Visualization version   GIF version

Theorem ruclem1 14799
Description: Lemma for ruc 14811 (the reals are uncountable). Substitutions for the function 𝐷. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Fan Zheng, 6-Jun-2016.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
Assertion
Ref Expression
ruclem1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem1
StepHypRef Expression
1 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
21oveqd 6566 . . . . 5 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀))
3 ruclem1.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 ruclem1.4 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5 opelxpi 5072 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
63, 4, 5syl2anc 691 . . . . . 6 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
7 ruclem1.5 . . . . . 6 (𝜑𝑀 ∈ ℝ)
8 simpr 476 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑦 = 𝑀)
98breq2d 4595 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 < 𝑦𝑚 < 𝑀))
10 simpl 472 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → 𝑥 = ⟨𝐴, 𝐵⟩)
1110fveq2d 6107 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
1211opeq1d 4346 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨(1st𝑥), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩)
1310fveq2d 6107 . . . . . . . . . . . . 13 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
1413oveq2d 6565 . . . . . . . . . . . 12 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (𝑚 + (2nd𝑥)) = (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)))
1514oveq1d 6564 . . . . . . . . . . 11 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((𝑚 + (2nd𝑥)) / 2) = ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
1615, 13opeq12d 4348 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩ = ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
179, 12, 16ifbieq12d 4063 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1817csbeq2dv 3944 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
1911, 13oveq12d 6567 . . . . . . . . . 10 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → ((1st𝑥) + (2nd𝑥)) = ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)))
2019oveq1d 6564 . . . . . . . . 9 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
2120csbeq1d 3506 . . . . . . . 8 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
2218, 21eqtrd 2644 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ 𝑦 = 𝑀) → (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
23 eqid 2610 . . . . . . 7 (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))
24 opex 4859 . . . . . . . . 9 ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ ∈ V
25 opex 4859 . . . . . . . . 9 ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ ∈ V
2624, 25ifex 4106 . . . . . . . 8 if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2726csbex 4721 . . . . . . 7 (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) ∈ V
2822, 23, 27ovmpt2a 6689 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ) ∧ 𝑀 ∈ ℝ) → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
296, 7, 28syl2anc 691 . . . . 5 (𝜑 → (⟨𝐴, 𝐵⟩(𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
302, 29eqtrd 2644 . . . 4 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
31 op1stg 7071 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
323, 4, 31syl2anc 691 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
33 op2ndg 7072 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
343, 4, 33syl2anc 691 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
3532, 34oveq12d 6567 . . . . . . 7 (𝜑 → ((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) = (𝐴 + 𝐵))
3635oveq1d 6564 . . . . . 6 (𝜑 → (((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((𝐴 + 𝐵) / 2))
3736csbeq1d 3506 . . . . 5 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
38 ovex 6577 . . . . . . 7 ((𝐴 + 𝐵) / 2) ∈ V
39 breq1 4586 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 < 𝑀 ↔ ((𝐴 + 𝐵) / 2) < 𝑀))
40 opeq2 4341 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩ = ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩)
41 oveq1 6556 . . . . . . . . . 10 (𝑚 = ((𝐴 + 𝐵) / 2) → (𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)))
4241oveq1d 6564 . . . . . . . . 9 (𝑚 = ((𝐴 + 𝐵) / 2) → ((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2))
4342opeq1d 4346 . . . . . . . 8 (𝑚 = ((𝐴 + 𝐵) / 2) → ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4439, 40, 43ifbieq12d 4063 . . . . . . 7 (𝑚 = ((𝐴 + 𝐵) / 2) → if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩))
4538, 44csbie 3525 . . . . . 6 ((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩)
4632opeq1d 4346 . . . . . . 7 (𝜑 → ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩ = ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩)
4734oveq2d 6565 . . . . . . . . 9 (𝜑 → (((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) = (((𝐴 + 𝐵) / 2) + 𝐵))
4847oveq1d 6564 . . . . . . . 8 (𝜑 → ((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
4948, 34opeq12d 4348 . . . . . . 7 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩ = ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)
5046, 49ifeq12d 4056 . . . . . 6 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5145, 50syl5eq 2656 . . . . 5 (𝜑((𝐴 + 𝐵) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5237, 51eqtrd 2644 . . . 4 (𝜑(((1st ‘⟨𝐴, 𝐵⟩) + (2nd ‘⟨𝐴, 𝐵⟩)) / 2) / 𝑚if(𝑚 < 𝑀, ⟨(1st ‘⟨𝐴, 𝐵⟩), 𝑚⟩, ⟨((𝑚 + (2nd ‘⟨𝐴, 𝐵⟩)) / 2), (2nd ‘⟨𝐴, 𝐵⟩)⟩) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
5330, 52eqtrd 2644 . . 3 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) = if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
543, 4readdcld 9948 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
5554rehalfcld 11156 . . . . 5 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
56 opelxpi 5072 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ ℝ) → ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩ ∈ (ℝ × ℝ))
573, 55, 56syl2anc 691 . . . 4 (𝜑 → ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩ ∈ (ℝ × ℝ))
5855, 4readdcld 9948 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
5958rehalfcld 11156 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
60 opelxpi 5072 . . . . 5 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩ ∈ (ℝ × ℝ))
6159, 4, 60syl2anc 691 . . . 4 (𝜑 → ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩ ∈ (ℝ × ℝ))
6257, 61ifcld 4081 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) ∈ (ℝ × ℝ))
6353, 62eqeltrd 2688 . 2 (𝜑 → (⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ))
64 ruclem1.6 . . 3 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
6553fveq2d 6107 . . . 4 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
66 fvif 6114 . . . . 5 (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
67 op1stg 7071 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
683, 38, 67sylancl 693 . . . . . 6 (𝜑 → (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = 𝐴)
69 ovex 6577 . . . . . . 7 ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V
70 op1stg 7071 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
7169, 4, 70sylancr 694 . . . . . 6 (𝜑 → (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
7268, 71ifeq12d 4056 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (1st ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (1st ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7366, 72syl5eq 2656 . . . 4 (𝜑 → (1st ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7465, 73eqtrd 2644 . . 3 (𝜑 → (1st ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
7564, 74syl5eq 2656 . 2 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
76 ruclem1.7 . . 3 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
7753fveq2d 6107 . . . 4 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)))
78 fvif 6114 . . . . 5 (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩))
79 op2ndg 7072 . . . . . . 7 ((𝐴 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ V) → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
803, 38, 79sylancl 693 . . . . . 6 (𝜑 → (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩) = ((𝐴 + 𝐵) / 2))
81 op2ndg 7072 . . . . . . 7 ((((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ V ∧ 𝐵 ∈ ℝ) → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
8269, 4, 81sylancr 694 . . . . . 6 (𝜑 → (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩) = 𝐵)
8380, 82ifeq12d 4056 . . . . 5 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, (2nd ‘⟨𝐴, ((𝐴 + 𝐵) / 2)⟩), (2nd ‘⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8478, 83syl5eq 2656 . . . 4 (𝜑 → (2nd ‘if(((𝐴 + 𝐵) / 2) < 𝑀, ⟨𝐴, ((𝐴 + 𝐵) / 2)⟩, ⟨((((𝐴 + 𝐵) / 2) + 𝐵) / 2), 𝐵⟩)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8577, 84eqtrd 2644 . . 3 (𝜑 → (2nd ‘(⟨𝐴, 𝐵𝐷𝑀)) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8676, 85syl5eq 2656 . 2 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
8763, 75, 863jca 1235 1 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499  ifcif 4036  cop 4131   class class class wbr 4583   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  cr 9814   + caddc 9818   < clt 9953   / cdiv 10563  cn 10897  2c2 10947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956
This theorem is referenced by:  ruclem2  14800  ruclem3  14801  ruclem6  14803
  Copyright terms: Public domain W3C validator