MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem2 Structured version   Visualization version   GIF version

Theorem ruclem2 14800
Description: Lemma for ruc 14811. Ordering property for the input to 𝐷. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem2.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ruclem2 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem2
StepHypRef Expression
1 ruclem1.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
21leidd 10473 . . . 4 (𝜑𝐴𝐴)
3 ruclem1.4 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
41, 3readdcld 9948 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54rehalfcld 11156 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
65, 3readdcld 9948 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
76rehalfcld 11156 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
8 ruclem2.8 . . . . . . 7 (𝜑𝐴 < 𝐵)
9 avglt1 11147 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
101, 3, 9syl2anc 691 . . . . . . 7 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
118, 10mpbid 221 . . . . . 6 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
12 avglt2 11148 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
131, 3, 12syl2anc 691 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
148, 13mpbid 221 . . . . . . 7 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
15 avglt1 11147 . . . . . . . 8 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
165, 3, 15syl2anc 691 . . . . . . 7 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1714, 16mpbid 221 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
181, 5, 7, 11, 17lttrd 10077 . . . . 5 (𝜑𝐴 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
191, 7, 18ltled 10064 . . . 4 (𝜑𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
20 breq2 4587 . . . . 5 (𝐴 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴𝐴𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
21 breq2 4587 . . . . 5 (((((𝐴 + 𝐵) / 2) + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → (𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ↔ 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))))
2220, 21ifboth 4074 . . . 4 ((𝐴𝐴𝐴 ≤ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
232, 19, 22syl2anc 691 . . 3 (𝜑𝐴 ≤ if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
24 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
25 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
26 ruclem1.5 . . . . 5 (𝜑𝑀 ∈ ℝ)
27 ruclem1.6 . . . . 5 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
28 ruclem1.7 . . . . 5 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
2924, 25, 1, 3, 26, 27, 28ruclem1 14799 . . . 4 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
3029simp2d 1067 . . 3 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
3123, 30breqtrrd 4611 . 2 (𝜑𝐴𝑋)
32 iftrue 4042 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = 𝐴)
33 iftrue 4042 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = ((𝐴 + 𝐵) / 2))
3432, 33breq12d 4596 . . . . 5 (((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ 𝐴 < ((𝐴 + 𝐵) / 2)))
3511, 34syl5ibrcom 236 . . . 4 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
36 avglt2 11148 . . . . . . 7 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
375, 3, 36syl2anc 691 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
3814, 37mpbid 221 . . . . 5 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵)
39 iffalse 4045 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
40 iffalse 4045 . . . . . 6 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = 𝐵)
4139, 40breq12d 4596 . . . . 5 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → (if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ↔ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) < 𝐵))
4238, 41syl5ibrcom 236 . . . 4 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
4335, 42pm2.61d 169 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) < if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4429simp3d 1068 . . 3 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
4543, 30, 443brtr4d 4615 . 2 (𝜑𝑋 < 𝑌)
465, 3, 14ltled 10064 . . . 4 (𝜑 → ((𝐴 + 𝐵) / 2) ≤ 𝐵)
473leidd 10473 . . . 4 (𝜑𝐵𝐵)
48 breq1 4586 . . . . 5 (((𝐴 + 𝐵) / 2) = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (((𝐴 + 𝐵) / 2) ≤ 𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
49 breq1 4586 . . . . 5 (𝐵 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) → (𝐵𝐵 ↔ if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵))
5048, 49ifboth 4074 . . . 4 ((((𝐴 + 𝐵) / 2) ≤ 𝐵𝐵𝐵) → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5146, 47, 50syl2anc 691 . . 3 (𝜑 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) ≤ 𝐵)
5244, 51eqbrtrd 4605 . 2 (𝜑𝑌𝐵)
5331, 45, 523jca 1235 1 (𝜑 → (𝐴𝑋𝑋 < 𝑌𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  w3a 1031   = wceq 1475  wcel 1977  csb 3499  ifcif 4036  cop 4131   class class class wbr 4583   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  cr 9814   + caddc 9818   < clt 9953  cle 9954   / cdiv 10563  cn 10897  2c2 10947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956
This theorem is referenced by:  ruclem8  14805  ruclem9  14806
  Copyright terms: Public domain W3C validator