MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem1 Structured version   Unicode version

Theorem ruclem1 14051
Description: Lemma for ruc 14063 (the reals are uncountable). Substitutions for the function  D. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Fan Zheng, 6-Jun-2016.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruclem1.3  |-  ( ph  ->  A  e.  RR )
ruclem1.4  |-  ( ph  ->  B  e.  RR )
ruclem1.5  |-  ( ph  ->  M  e.  RR )
ruclem1.6  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
ruclem1.7  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
Assertion
Ref Expression
ruclem1  |-  ( ph  ->  ( ( <. A ,  B >. D M )  e.  ( RR  X.  RR )  /\  X  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  /\  Y  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) ) )
Distinct variable groups:    x, m, y, A    B, m, x, y    m, F, x, y    m, M, x, y
Allowed substitution hints:    ph( x, y, m)    D( x, y, m)    X( x, y, m)    Y( x, y, m)

Proof of Theorem ruclem1
StepHypRef Expression
1 ruc.2 . . . . . 6  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
21oveqd 6287 . . . . 5  |-  ( ph  ->  ( <. A ,  B >. D M )  =  ( <. A ,  B >. ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) M ) )
3 ruclem1.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
4 ruclem1.4 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
5 opelxpi 5020 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
<. A ,  B >.  e.  ( RR  X.  RR ) )
63, 4, 5syl2anc 659 . . . . . 6  |-  ( ph  -> 
<. A ,  B >.  e.  ( RR  X.  RR ) )
7 ruclem1.5 . . . . . 6  |-  ( ph  ->  M  e.  RR )
8 simpr 459 . . . . . . . . . . 11  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  y  =  M )
98breq2d 4451 . . . . . . . . . 10  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
m  <  y  <->  m  <  M ) )
10 simpl 455 . . . . . . . . . . . 12  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  x  =  <. A ,  B >. )
1110fveq2d 5852 . . . . . . . . . . 11  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  ( 1st `  x )  =  ( 1st `  <. A ,  B >. )
)
1211opeq1d 4209 . . . . . . . . . 10  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  <. ( 1st `  x ) ,  m >.  =  <. ( 1st `  <. A ,  B >. ) ,  m >. )
1310fveq2d 5852 . . . . . . . . . . . . 13  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  ( 2nd `  x )  =  ( 2nd `  <. A ,  B >. )
)
1413oveq2d 6286 . . . . . . . . . . . 12  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
m  +  ( 2nd `  x ) )  =  ( m  +  ( 2nd `  <. A ,  B >. ) ) )
1514oveq1d 6285 . . . . . . . . . . 11  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
( m  +  ( 2nd `  x ) )  /  2 )  =  ( ( m  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) )
1615, 13opeq12d 4211 . . . . . . . . . 10  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  <. (
( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >.  =  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
179, 12, 16ifbieq12d 3956 . . . . . . . . 9  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. )  =  if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
1817csbeq2dv 3831 . . . . . . . 8  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  [_ (
( ( 1st `  x
)  +  ( 2nd `  x ) )  / 
2 )  /  m ]_ if ( m  < 
y ,  <. ( 1st `  x ) ,  m >. ,  <. (
( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. )  =  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
1911, 13oveq12d 6288 . . . . . . . . . 10  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
( 1st `  x
)  +  ( 2nd `  x ) )  =  ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
) )
2019oveq1d 6285 . . . . . . . . 9  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
( ( 1st `  x
)  +  ( 2nd `  x ) )  / 
2 )  =  ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) )
2120csbeq1d 3427 . . . . . . . 8  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  [_ (
( ( 1st `  x
)  +  ( 2nd `  x ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  [_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
2218, 21eqtrd 2495 . . . . . . 7  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  [_ (
( ( 1st `  x
)  +  ( 2nd `  x ) )  / 
2 )  /  m ]_ if ( m  < 
y ,  <. ( 1st `  x ) ,  m >. ,  <. (
( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. )  =  [_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  /  2
)  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
23 eqid 2454 . . . . . . 7  |-  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) )  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) )
24 opex 4701 . . . . . . . . 9  |-  <. ( 1st `  <. A ,  B >. ) ,  m >.  e. 
_V
25 opex 4701 . . . . . . . . 9  |-  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >.  e.  _V
2624, 25ifex 3997 . . . . . . . 8  |-  if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  e.  _V
2726csbex 4572 . . . . . . 7  |-  [_ (
( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  e.  _V
2822, 23, 27ovmpt2a 6406 . . . . . 6  |-  ( (
<. A ,  B >.  e.  ( RR  X.  RR )  /\  M  e.  RR )  ->  ( <. A ,  B >. ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) M )  =  [_ (
( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
296, 7, 28syl2anc 659 . . . . 5  |-  ( ph  ->  ( <. A ,  B >. ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) M )  =  [_ (
( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
302, 29eqtrd 2495 . . . 4  |-  ( ph  ->  ( <. A ,  B >. D M )  = 
[_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
31 op1stg 6785 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1st `  <. A ,  B >. )  =  A )
323, 4, 31syl2anc 659 . . . . . . . 8  |-  ( ph  ->  ( 1st `  <. A ,  B >. )  =  A )
33 op2ndg 6786 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2nd `  <. A ,  B >. )  =  B )
343, 4, 33syl2anc 659 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  <. A ,  B >. )  =  B )
3532, 34oveq12d 6288 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  =  ( A  +  B ) )
3635oveq1d 6285 . . . . . 6  |-  ( ph  ->  ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  /  2
)  =  ( ( A  +  B )  /  2 ) )
3736csbeq1d 3427 . . . . 5  |-  ( ph  ->  [_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  [_ ( ( A  +  B )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
38 ovex 6298 . . . . . . 7  |-  ( ( A  +  B )  /  2 )  e. 
_V
39 breq1 4442 . . . . . . . 8  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  (
m  <  M  <->  ( ( A  +  B )  /  2 )  < 
M ) )
40 opeq2 4204 . . . . . . . 8  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  <. ( 1st `  <. A ,  B >. ) ,  m >.  = 
<. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  / 
2 ) >. )
41 oveq1 6277 . . . . . . . . . 10  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  (
m  +  ( 2nd `  <. A ,  B >. ) )  =  ( ( ( A  +  B )  /  2
)  +  ( 2nd `  <. A ,  B >. ) ) )
4241oveq1d 6285 . . . . . . . . 9  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  =  ( ( ( ( A  +  B )  / 
2 )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) )
4342opeq1d 4209 . . . . . . . 8  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >.  =  <. ( ( ( ( A  +  B )  / 
2 )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
4439, 40, 43ifbieq12d 3956 . . . . . . 7  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  /  2 ) >. ,  <. ( ( ( ( A  +  B
)  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) ,  ( 2nd `  <. A ,  B >. ) >. ) )
4538, 44csbie 3446 . . . . . 6  |-  [_ (
( A  +  B
)  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  /  2 ) >. ,  <. ( ( ( ( A  +  B
)  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
4632opeq1d 4209 . . . . . . 7  |-  ( ph  -> 
<. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  / 
2 ) >.  =  <. A ,  ( ( A  +  B )  / 
2 ) >. )
4734oveq2d 6286 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  +  ( 2nd `  <. A ,  B >. ) )  =  ( ( ( A  +  B )  / 
2 )  +  B
) )
4847oveq1d 6285 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A  +  B )  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 )  =  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
4948, 34opeq12d 4211 . . . . . . 7  |-  ( ph  -> 
<. ( ( ( ( A  +  B )  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) ,  ( 2nd `  <. A ,  B >. ) >.  =  <. ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ,  B >. )
5046, 49ifeq12d 3949 . . . . . 6  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  /  2 ) >. ,  <. ( ( ( ( A  +  B
)  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2
)  <  M ,  <. A ,  ( ( A  +  B )  /  2 ) >. ,  <. ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ,  B >. ) )
5145, 50syl5eq 2507 . . . . 5  |-  ( ph  ->  [_ ( ( A  +  B )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
5237, 51eqtrd 2495 . . . 4  |-  ( ph  ->  [_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
5330, 52eqtrd 2495 . . 3  |-  ( ph  ->  ( <. A ,  B >. D M )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
543, 4readdcld 9612 . . . . . 6  |-  ( ph  ->  ( A  +  B
)  e.  RR )
5554rehalfcld 10781 . . . . 5  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  RR )
56 opelxpi 5020 . . . . 5  |-  ( ( A  e.  RR  /\  ( ( A  +  B )  /  2
)  e.  RR )  ->  <. A ,  ( ( A  +  B
)  /  2 )
>.  e.  ( RR  X.  RR ) )
573, 55, 56syl2anc 659 . . . 4  |-  ( ph  -> 
<. A ,  ( ( A  +  B )  /  2 ) >.  e.  ( RR  X.  RR ) )
5855, 4readdcld 9612 . . . . . 6  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  +  B
)  e.  RR )
5958rehalfcld 10781 . . . . 5  |-  ( ph  ->  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  RR )
60 opelxpi 5020 . . . . 5  |-  ( ( ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  RR  /\  B  e.  RR )  -> 
<. ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ,  B >.  e.  ( RR  X.  RR ) )
6159, 4, 60syl2anc 659 . . . 4  |-  ( ph  -> 
<. ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ,  B >.  e.  ( RR  X.  RR ) )
6257, 61ifcld 3972 . . 3  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  e.  ( RR  X.  RR ) )
6353, 62eqeltrd 2542 . 2  |-  ( ph  ->  ( <. A ,  B >. D M )  e.  ( RR  X.  RR ) )
64 ruclem1.6 . . 3  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
6553fveq2d 5852 . . . 4  |-  ( ph  ->  ( 1st `  ( <. A ,  B >. D M ) )  =  ( 1st `  if ( ( ( A  +  B )  / 
2 )  <  M ,  <. A ,  ( ( A  +  B
)  /  2 )
>. ,  <. ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ,  B >. ) ) )
66 fvif 5859 . . . . 5  |-  ( 1st `  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)  =  if ( ( ( A  +  B )  /  2
)  <  M , 
( 1st `  <. A ,  ( ( A  +  B )  / 
2 ) >. ) ,  ( 1st `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
67 op1stg 6785 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( A  +  B )  /  2
)  e.  _V )  ->  ( 1st `  <. A ,  ( ( A  +  B )  / 
2 ) >. )  =  A )
683, 38, 67sylancl 660 . . . . . 6  |-  ( ph  ->  ( 1st `  <. A ,  ( ( A  +  B )  / 
2 ) >. )  =  A )
69 ovex 6298 . . . . . . 7  |-  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 )  e. 
_V
70 op1stg 6785 . . . . . . 7  |-  ( ( ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  _V  /\  B  e.  RR )  ->  ( 1st `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  =  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
7169, 4, 70sylancr 661 . . . . . 6  |-  ( ph  ->  ( 1st `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  =  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
7268, 71ifeq12d 3949 . . . . 5  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( 1st `  <. A ,  ( ( A  +  B
)  /  2 )
>. ) ,  ( 1st `  <. ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ,  B >. ) )  =  if ( ( ( A  +  B )  / 
2 )  <  M ,  A ,  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ) )
7366, 72syl5eq 2507 . . . 4  |-  ( ph  ->  ( 1st `  if ( ( ( A  +  B )  / 
2 )  <  M ,  <. A ,  ( ( A  +  B
)  /  2 )
>. ,  <. ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ,  B >. ) )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ) )
7465, 73eqtrd 2495 . . 3  |-  ( ph  ->  ( 1st `  ( <. A ,  B >. D M ) )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ) )
7564, 74syl5eq 2507 . 2  |-  ( ph  ->  X  =  if ( ( ( A  +  B )  /  2
)  <  M ,  A ,  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) ) )
76 ruclem1.7 . . 3  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
7753fveq2d 5852 . . . 4  |-  ( ph  ->  ( 2nd `  ( <. A ,  B >. D M ) )  =  ( 2nd `  if ( ( ( A  +  B )  / 
2 )  <  M ,  <. A ,  ( ( A  +  B
)  /  2 )
>. ,  <. ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ,  B >. ) ) )
78 fvif 5859 . . . . 5  |-  ( 2nd `  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)  =  if ( ( ( A  +  B )  /  2
)  <  M , 
( 2nd `  <. A ,  ( ( A  +  B )  / 
2 ) >. ) ,  ( 2nd `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
79 op2ndg 6786 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( A  +  B )  /  2
)  e.  _V )  ->  ( 2nd `  <. A ,  ( ( A  +  B )  / 
2 ) >. )  =  ( ( A  +  B )  / 
2 ) )
803, 38, 79sylancl 660 . . . . . 6  |-  ( ph  ->  ( 2nd `  <. A ,  ( ( A  +  B )  / 
2 ) >. )  =  ( ( A  +  B )  / 
2 ) )
81 op2ndg 6786 . . . . . . 7  |-  ( ( ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  _V  /\  B  e.  RR )  ->  ( 2nd `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  =  B )
8269, 4, 81sylancr 661 . . . . . 6  |-  ( ph  ->  ( 2nd `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  =  B )
8380, 82ifeq12d 3949 . . . . 5  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( 2nd `  <. A ,  ( ( A  +  B
)  /  2 )
>. ) ,  ( 2nd `  <. ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ,  B >. ) )  =  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
) )
8478, 83syl5eq 2507 . . . 4  |-  ( ph  ->  ( 2nd `  if ( ( ( A  +  B )  / 
2 )  <  M ,  <. A ,  ( ( A  +  B
)  /  2 )
>. ,  <. ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ,  B >. ) )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) )
8577, 84eqtrd 2495 . . 3  |-  ( ph  ->  ( 2nd `  ( <. A ,  B >. D M ) )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) )
8676, 85syl5eq 2507 . 2  |-  ( ph  ->  Y  =  if ( ( ( A  +  B )  /  2
)  <  M , 
( ( A  +  B )  /  2
) ,  B ) )
8763, 75, 863jca 1174 1  |-  ( ph  ->  ( ( <. A ,  B >. D M )  e.  ( RR  X.  RR )  /\  X  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  /\  Y  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   _Vcvv 3106   [_csb 3420   ifcif 3929   <.cop 4022   class class class wbr 4439    X. cxp 4986   -->wf 5566   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   1stc1st 6771   2ndc2nd 6772   RRcr 9480    + caddc 9484    < clt 9617    / cdiv 10202   NNcn 10531   2c2 10581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-2 10590
This theorem is referenced by:  ruclem2  14052  ruclem3  14053  ruclem6  14055
  Copyright terms: Public domain W3C validator