MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssnn0fi Structured version   Visualization version   GIF version

Theorem rabssnn0fi 12647
Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
rabssnn0fi ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
Distinct variable groups:   𝑥,𝑠   𝜑,𝑠
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabssnn0fi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3650 . 2 {𝑥 ∈ ℕ0𝜑} ⊆ ℕ0
2 ssnn0fi 12646 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑})))
3 nnel 2892 . . . . . . . . . 10 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ 𝑦 ∈ {𝑥 ∈ ℕ0𝜑})
4 nfcv 2751 . . . . . . . . . . . 12 𝑥𝑦
5 nfcv 2751 . . . . . . . . . . . 12 𝑥0
6 nfsbc1v 3422 . . . . . . . . . . . . 13 𝑥[𝑦 / 𝑥] ¬ 𝜑
76nfn 1768 . . . . . . . . . . . 12 𝑥 ¬ [𝑦 / 𝑥] ¬ 𝜑
8 sbceq2a 3414 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
98equcoms 1934 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
109con2bid 343 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝜑 ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
114, 5, 7, 10elrabf 3329 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ (𝑦 ∈ ℕ0 ∧ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1211baib 942 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
133, 12syl5bb 271 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (¬ 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1413con4bid 306 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ [𝑦 / 𝑥] ¬ 𝜑))
1514imbi2d 329 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)))
1615ralbiia 2962 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑))
17 nfv 1830 . . . . . . . 8 𝑥 𝑠 < 𝑦
1817, 6nfim 1813 . . . . . . 7 𝑥(𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)
19 nfv 1830 . . . . . . 7 𝑦(𝑠 < 𝑥 → ¬ 𝜑)
20 breq2 4587 . . . . . . . 8 (𝑦 = 𝑥 → (𝑠 < 𝑦𝑠 < 𝑥))
2120, 8imbi12d 333 . . . . . . 7 (𝑦 = 𝑥 → ((𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑠 < 𝑥 → ¬ 𝜑)))
2218, 19, 21cbvral 3143 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2316, 22bitri 263 . . . . 5 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2423a1i 11 . . . 4 (({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
2524rexbidva 3031 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → (∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
262, 25bitrd 267 . 2 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
271, 26ax-mp 5 1 ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wcel 1977  wnel 2781  wral 2896  wrex 2897  {crab 2900  [wsbc 3402  wss 3540   class class class wbr 4583  Fincfn 7841   < clt 9953  0cn0 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  fsuppmapnn0ub  12657  mptnn0fsupp  12659  mptnn0fsuppr  12661  pmatcollpw2lem  20401
  Copyright terms: Public domain W3C validator