Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qtophaus Structured version   Visualization version   GIF version

Theorem qtophaus 29231
 Description: If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.)
Hypotheses
Ref Expression
qtophaus.x 𝑋 = 𝐽
qtophaus.e = (𝐹𝐹)
qtophaus.h 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
qtophaus.1 (𝜑𝐽 ∈ Haus)
qtophaus.2 (𝜑𝐹:𝑋onto𝑌)
qtophaus.3 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
qtophaus.4 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
Assertion
Ref Expression
qtophaus (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem qtophaus
Dummy variables 𝑎 𝑏 𝑐 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qtophaus.1 . . . 4 (𝜑𝐽 ∈ Haus)
2 haustop 20945 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 qtophaus.2 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fofn 6030 . . . 4 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
64, 5syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
7 qtophaus.x . . . 4 𝑋 = 𝐽
87qtoptop 21313 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
93, 6, 8syl2anc 691 . 2 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
10 txtop 21182 . . . 4 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
119, 9, 10syl2anc 691 . . 3 (𝜑 → ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top)
12 idssxp 28811 . . . 4 ( I ↾ (𝐽 qTop 𝐹)) ⊆ ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹))
13 eqid 2610 . . . . . 6 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
1413, 13txuni 21205 . . . . 5 (((𝐽 qTop 𝐹) ∈ Top ∧ (𝐽 qTop 𝐹) ∈ Top) → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
159, 9, 14syl2anc 691 . . . 4 (𝜑 → ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
1612, 15syl5sseq 3616 . . 3 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
177qtopuni 21315 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
183, 4, 17syl2anc 691 . . . . . . 7 (𝜑𝑌 = (𝐽 qTop 𝐹))
1918sqxpeqd 5065 . . . . . 6 (𝜑 → (𝑌 × 𝑌) = ( (𝐽 qTop 𝐹) × (𝐽 qTop 𝐹)))
2019, 15eqtr2d 2645 . . . . 5 (𝜑 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = (𝑌 × 𝑌))
2118eqcomd 2616 . . . . . 6 (𝜑 (𝐽 qTop 𝐹) = 𝑌)
2221reseq2d 5317 . . . . 5 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) = ( I ↾ 𝑌))
2320, 22difeq12d 3691 . . . 4 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
24 simp-4r 803 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥𝑋)
25 simplr 788 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑦𝑋)
26 opelxpi 5072 . . . . . . . . . . . . . . . 16 ((𝑥𝑋𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
2724, 25, 26syl2anc 691 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
28 df-br 4584 . . . . . . . . . . . . . . 15 (𝑥(𝑋 × 𝑋)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
2927, 28sylibr 223 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑥(𝑋 × 𝑋)𝑦)
30 simpllr 795 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) = 𝑎)
31 simpr 476 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑦) = 𝑏)
3230, 31opeq12d 4348 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨𝑎, 𝑏⟩)
33 simp-5r 805 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 = ⟨𝑎, 𝑏⟩)
34 simp-8r 811 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
3533, 34eqeltrrd 2689 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑎, 𝑏⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
3632, 35eqeltrd 2688 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
37 relxp 5150 . . . . . . . . . . . . . . . . . 18 Rel (𝑌 × 𝑌)
38 opeldifid 28794 . . . . . . . . . . . . . . . . . 18 (Rel (𝑌 × 𝑌) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦))))
3937, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ) ↔ (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4036, 39sylib 207 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ∧ (𝐹𝑥) ≠ (𝐹𝑦)))
4140simprd 478 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐹𝑥) ≠ (𝐹𝑦))
426ad8antr 772 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → 𝐹 Fn 𝑋)
43 qtophaus.e . . . . . . . . . . . . . . . . . 18 = (𝐹𝐹)
4443fcoinvbr 28799 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑋𝑥𝑋𝑦𝑋) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
4542, 24, 25, 44syl3anc 1318 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
4645necon3bbid 2819 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
4741, 46mpbird 246 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ¬ 𝑥 𝑦)
48 df-br 4584 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
49 brdif 4635 . . . . . . . . . . . . . . 15 (𝑥((𝑋 × 𝑋) ∖ )𝑦 ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5048, 49bitr3i 265 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ↔ (𝑥(𝑋 × 𝑋)𝑦 ∧ ¬ 𝑥 𝑦))
5129, 47, 50sylanbrc 695 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
52 qtophaus.h . . . . . . . . . . . . . . 15 𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
5352, 24, 25fvproj 29227 . . . . . . . . . . . . . 14 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
5432, 53, 333eqtr4d 2654 . . . . . . . . . . . . 13 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐)
55 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
5655eqeq1d 2612 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐻𝑧) = 𝑐 ↔ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐))
5756rspcev 3282 . . . . . . . . . . . . 13 ((⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) ∧ (𝐻‘⟨𝑥, 𝑦⟩) = 𝑐) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
5851, 54, 57syl2anc 691 . . . . . . . . . . . 12 (((((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) ∧ 𝑦𝑋) ∧ (𝐹𝑦) = 𝑏) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
59 fofun 6029 . . . . . . . . . . . . . . . 16 (𝐹:𝑋onto𝑌 → Fun 𝐹)
604, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐹)
6160ad4antr 764 . . . . . . . . . . . . . 14 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → Fun 𝐹)
6261ad2antrr 758 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → Fun 𝐹)
63 simp-4r 803 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏𝑌)
64 foima 6033 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
654, 64syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑋) = 𝑌)
6665ad4antr 764 . . . . . . . . . . . . . . 15 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → (𝐹𝑋) = 𝑌)
6766ad2antrr 758 . . . . . . . . . . . . . 14 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → (𝐹𝑋) = 𝑌)
6863, 67eleqtrrd 2691 . . . . . . . . . . . . 13 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → 𝑏 ∈ (𝐹𝑋))
69 fvelima 6158 . . . . . . . . . . . . 13 ((Fun 𝐹𝑏 ∈ (𝐹𝑋)) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
7062, 68, 69syl2anc 691 . . . . . . . . . . . 12 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑦𝑋 (𝐹𝑦) = 𝑏)
7158, 70r19.29a 3060 . . . . . . . . . . 11 (((((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) ∧ 𝑥𝑋) ∧ (𝐹𝑥) = 𝑎) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
72 simpllr 795 . . . . . . . . . . . . 13 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎𝑌)
7372, 66eleqtrrd 2691 . . . . . . . . . . . 12 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → 𝑎 ∈ (𝐹𝑋))
74 fvelima 6158 . . . . . . . . . . . 12 ((Fun 𝐹𝑎 ∈ (𝐹𝑋)) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
7561, 73, 74syl2anc 691 . . . . . . . . . . 11 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑥𝑋 (𝐹𝑥) = 𝑎)
7671, 75r19.29a 3060 . . . . . . . . . 10 (((((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) ∧ 𝑎𝑌) ∧ 𝑏𝑌) ∧ 𝑐 = ⟨𝑎, 𝑏⟩) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
77 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
7877eldifad 3552 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → 𝑐 ∈ (𝑌 × 𝑌))
79 elxp2 5056 . . . . . . . . . . 11 (𝑐 ∈ (𝑌 × 𝑌) ↔ ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
8078, 79sylib 207 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑎𝑌𝑏𝑌 𝑐 = ⟨𝑎, 𝑏⟩)
8176, 80r19.29vva 3062 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑌 × 𝑌) ∖ I )) → ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
82 simpr 476 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 = ⟨𝑥, 𝑦⟩)
8382fveq2d 6107 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
84 simp-4r 803 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻𝑧) = 𝑐)
85 simpllr 795 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑥𝑋)
86 simplr 788 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑦𝑋)
8752, 85, 86fvproj 29227 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐻‘⟨𝑥, 𝑦⟩) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
8883, 84, 873eqtr3d 2652 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
89 fof 6028 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
904, 89syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋𝑌)
9190ad5antr 766 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹:𝑋𝑌)
9291, 85ffvelrnd 6268 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ∈ 𝑌)
9391, 86ffvelrnd 6268 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑦) ∈ 𝑌)
94 opelxp 5070 . . . . . . . . . . . . . 14 (⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌) ↔ ((𝐹𝑥) ∈ 𝑌 ∧ (𝐹𝑦) ∈ 𝑌))
9592, 93, 94sylanbrc 695 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ (𝑌 × 𝑌))
96 simp-5r 805 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑧 ∈ ((𝑋 × 𝑋) ∖ ))
9782, 96eqeltrrd 2689 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ))
9850simprbi 479 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ((𝑋 × 𝑋) ∖ ) → ¬ 𝑥 𝑦)
9997, 98syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ¬ 𝑥 𝑦)
1006ad5antr 766 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝐹 Fn 𝑋)
101100, 85, 86, 44syl3anc 1318 . . . . . . . . . . . . . . 15 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑥 𝑦 ↔ (𝐹𝑥) = (𝐹𝑦)))
102101necon3bbid 2819 . . . . . . . . . . . . . 14 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (¬ 𝑥 𝑦 ↔ (𝐹𝑥) ≠ (𝐹𝑦)))
10399, 102mpbid 221 . . . . . . . . . . . . 13 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) ≠ (𝐹𝑦))
10495, 103, 39sylanbrc 695 . . . . . . . . . . . 12 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ ((𝑌 × 𝑌) ∖ I ))
10588, 104eqeltrd 2688 . . . . . . . . . . 11 ((((((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) ∧ 𝑥𝑋) ∧ 𝑦𝑋) ∧ 𝑧 = ⟨𝑥, 𝑦⟩) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
106 eldifi 3694 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑋 × 𝑋) ∖ ) → 𝑧 ∈ (𝑋 × 𝑋))
107106adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → 𝑧 ∈ (𝑋 × 𝑋))
108 elxp2 5056 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) ↔ ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
109107, 108sylib 207 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
110109adantr 480 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → ∃𝑥𝑋𝑦𝑋 𝑧 = ⟨𝑥, 𝑦⟩)
111105, 110r19.29vva 3062 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋 × 𝑋) ∖ )) ∧ (𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
112111r19.29an 3059 . . . . . . . . 9 ((𝜑 ∧ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐) → 𝑐 ∈ ((𝑌 × 𝑌) ∖ I ))
11381, 112impbida 873 . . . . . . . 8 (𝜑 → (𝑐 ∈ ((𝑌 × 𝑌) ∖ I ) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
114 opex 4859 . . . . . . . . . 10 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
11552, 114fnmpt2i 7128 . . . . . . . . 9 𝐻 Fn (𝑋 × 𝑋)
116 difss 3699 . . . . . . . . 9 ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)
117 fvelimab 6163 . . . . . . . . 9 ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 × 𝑋) ∖ ) ⊆ (𝑋 × 𝑋)) → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐))
118115, 116, 117mp2an 704 . . . . . . . 8 (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ ∃𝑧 ∈ ((𝑋 × 𝑋) ∖ )(𝐻𝑧) = 𝑐)
119113, 118syl6rbbr 278 . . . . . . 7 (𝜑 → (𝑐 ∈ (𝐻 “ ((𝑋 × 𝑋) ∖ )) ↔ 𝑐 ∈ ((𝑌 × 𝑌) ∖ I )))
120119eqrdv 2608 . . . . . 6 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ I ))
121 ssv 3588 . . . . . . 7 𝑌 ⊆ V
122 xpss2 5152 . . . . . . 7 (𝑌 ⊆ V → (𝑌 × 𝑌) ⊆ (𝑌 × V))
123 difres 28795 . . . . . . 7 ((𝑌 × 𝑌) ⊆ (𝑌 × V) → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I ))
124121, 122, 123mp2b 10 . . . . . 6 ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) = ((𝑌 × 𝑌) ∖ I )
125120, 124syl6eqr 2662 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) = ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)))
1267toptopon 20548 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1273, 126sylib 207 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
128 qtoptopon 21317 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
129127, 4, 128syl2anc 691 . . . . . 6 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
130 qtophaus.3 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
131130ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
132 imaeq2 5381 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
133132eleq1d 2672 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹𝑦) ∈ (𝐽 qTop 𝐹)))
134133cbvralv 3147 . . . . . . . 8 (∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
135131, 134sylib 207 . . . . . . 7 (𝜑 → ∀𝑦𝐽 (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
136135r19.21bi 2916 . . . . . 6 ((𝜑𝑦𝐽) → (𝐹𝑦) ∈ (𝐽 qTop 𝐹))
1377, 7txuni 21205 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1383, 3, 137syl2anc 691 . . . . . . . 8 (𝜑 → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
139138difeq1d 3689 . . . . . . 7 (𝜑 → ((𝑋 × 𝑋) ∖ ) = ( (𝐽 ×t 𝐽) ∖ ))
140 qtophaus.4 . . . . . . . 8 (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))
141 txtop 21182 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
1423, 3, 141syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐽) ∈ Top)
143 fcoinver 28798 . . . . . . . . . . . . 13 (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
1446, 143syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐹) Er 𝑋)
145 ereq1 7636 . . . . . . . . . . . . 13 ( = (𝐹𝐹) → ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋))
14643, 145ax-mp 5 . . . . . . . . . . . 12 ( Er 𝑋 ↔ (𝐹𝐹) Er 𝑋)
147144, 146sylibr 223 . . . . . . . . . . 11 (𝜑 Er 𝑋)
148 erssxp 7652 . . . . . . . . . . 11 ( Er 𝑋 ⊆ (𝑋 × 𝑋))
149147, 148syl 17 . . . . . . . . . 10 (𝜑 ⊆ (𝑋 × 𝑋))
150149, 138sseqtrd 3604 . . . . . . . . 9 (𝜑 (𝐽 ×t 𝐽))
151 eqid 2610 . . . . . . . . . 10 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
152151iscld2 20642 . . . . . . . . 9 (((𝐽 ×t 𝐽) ∈ Top ∧ (𝐽 ×t 𝐽)) → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
153142, 150, 152syl2anc 691 . . . . . . . 8 (𝜑 → ( ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽)))
154140, 153mpbid 221 . . . . . . 7 (𝜑 → ( (𝐽 ×t 𝐽) ∖ ) ∈ (𝐽 ×t 𝐽))
155139, 154eqeltrd 2688 . . . . . 6 (𝜑 → ((𝑋 × 𝑋) ∖ ) ∈ (𝐽 ×t 𝐽))
15690, 90, 127, 127, 129, 129, 130, 136, 155, 52txomap 29229 . . . . 5 (𝜑 → (𝐻 “ ((𝑋 × 𝑋) ∖ )) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
157125, 156eqeltrrd 2689 . . . 4 (𝜑 → ((𝑌 × 𝑌) ∖ ( I ↾ 𝑌)) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
15823, 157eqeltrd 2688 . . 3 (𝜑 → ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))
159 eqid 2610 . . . . 5 ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) = ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))
160159iscld2 20642 . . . 4 ((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → (( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ↔ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
161160biimpar 501 . . 3 (((((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ⊆ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) ∧ ( ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)) ∖ ( I ↾ (𝐽 qTop 𝐹))) ∈ ((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))) → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16211, 16, 158, 161syl21anc 1317 . 2 (𝜑 → ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹))))
16313hausdiag 21258 . 2 ((𝐽 qTop 𝐹) ∈ Haus ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ( I ↾ (𝐽 qTop 𝐹)) ∈ (Clsd‘((𝐽 qTop 𝐹) ×t (𝐽 qTop 𝐹)))))
1649, 162, 163sylanbrc 695 1 (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ⟨cop 4131  ∪ cuni 4372   class class class wbr 4583   I cid 4948   × cxp 5036  ◡ccnv 5037   ↾ cres 5040   “ cima 5041   ∘ ccom 5042  Rel wrel 5043  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  –onto→wfo 5802  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   Er wer 7626   qTop cqtop 15986  Topctop 20517  TopOnctopon 20518  Clsdccld 20630  Hauscha 20922   ×t ctx 21173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-topgen 15927  df-qtop 15990  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-haus 20929  df-tx 21175 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator