Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qtopuni | Structured version Visualization version GIF version |
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
qtopuni | ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3587 | . . . . 5 ⊢ 𝑌 ⊆ 𝑌 | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ 𝑌) |
3 | fof 6028 | . . . . . . 7 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝐹:𝑋⟶𝑌) |
5 | fimacnv 6255 | . . . . . 6 ⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑌) = 𝑋) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) = 𝑋) |
7 | qtoptop.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | topopn 20536 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑋 ∈ 𝐽) |
10 | 6, 9 | eqeltrd 2688 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) ∈ 𝐽) |
11 | 7 | elqtop2 21314 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑌 ∈ (𝐽 qTop 𝐹) ↔ (𝑌 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑌) ∈ 𝐽))) |
12 | 2, 10, 11 | mpbir2and 959 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ∈ (𝐽 qTop 𝐹)) |
13 | elssuni 4403 | . . 3 ⊢ (𝑌 ∈ (𝐽 qTop 𝐹) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) |
15 | 7 | elqtop2 21314 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
16 | simpl 472 | . . . . . 6 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ⊆ 𝑌) | |
17 | selpw 4115 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝑌 ↔ 𝑥 ⊆ 𝑌) | |
18 | 16, 17 | sylibr 223 | . . . . 5 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌) |
19 | 15, 18 | syl6bi 242 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌)) |
20 | 19 | ssrdv 3574 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌) |
21 | sspwuni 4547 | . . 3 ⊢ ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 ↔ ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) | |
22 | 20, 21 | sylib 207 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) |
23 | 14, 22 | eqssd 3585 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 ◡ccnv 5037 “ cima 5041 ⟶wf 5800 –onto→wfo 5802 (class class class)co 6549 qTop cqtop 15986 Topctop 20517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-qtop 15990 df-top 20521 |
This theorem is referenced by: qtoptopon 21317 qtopcmplem 21320 qtopkgen 21323 qtopt1 29230 qtophaus 29231 circtopn 29232 |
Copyright terms: Public domain | W3C validator |