Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idssxp Structured version   Visualization version   GIF version

Theorem idssxp 28811
Description: A diagonal set as a subset of a Cartesian product. (Contributed by Thierry Arnoux, 29-Dec-2019.)
Assertion
Ref Expression
idssxp ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)

Proof of Theorem idssxp
StepHypRef Expression
1 fnresi 5922 . . 3 ( I ↾ 𝐴) Fn 𝐴
2 fnrel 5903 . . 3 (( I ↾ 𝐴) Fn 𝐴 → Rel ( I ↾ 𝐴))
3 relssdmrn 5573 . . 3 (Rel ( I ↾ 𝐴) → ( I ↾ 𝐴) ⊆ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴)))
41, 2, 3mp2b 10 . 2 ( I ↾ 𝐴) ⊆ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴))
5 dmresi 5376 . . 3 dom ( I ↾ 𝐴) = 𝐴
6 rnresi 5398 . . 3 ran ( I ↾ 𝐴) = 𝐴
75, 6xpeq12i 5061 . 2 (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴)) = (𝐴 × 𝐴)
84, 7sseqtri 3600 1 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wss 3540   I cid 4948   × cxp 5036  dom cdm 5038  ran crn 5039  cres 5040  Rel wrel 5043   Fn wfn 5799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-fun 5806  df-fn 5807
This theorem is referenced by:  qtophaus  29231
  Copyright terms: Public domain W3C validator