Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idssxp | Structured version Visualization version GIF version |
Description: A diagonal set as a subset of a Cartesian product. (Contributed by Thierry Arnoux, 29-Dec-2019.) |
Ref | Expression |
---|---|
idssxp | ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 5922 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | fnrel 5903 | . . 3 ⊢ (( I ↾ 𝐴) Fn 𝐴 → Rel ( I ↾ 𝐴)) | |
3 | relssdmrn 5573 | . . 3 ⊢ (Rel ( I ↾ 𝐴) → ( I ↾ 𝐴) ⊆ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴)) |
5 | dmresi 5376 | . . 3 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
6 | rnresi 5398 | . . 3 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
7 | 5, 6 | xpeq12i 5061 | . 2 ⊢ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴)) = (𝐴 × 𝐴) |
8 | 4, 7 | sseqtri 3600 | 1 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3540 I cid 4948 × cxp 5036 dom cdm 5038 ran crn 5039 ↾ cres 5040 Rel wrel 5043 Fn wfn 5799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-fun 5806 df-fn 5807 |
This theorem is referenced by: qtophaus 29231 |
Copyright terms: Public domain | W3C validator |