MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthmeo Structured version   Visualization version   GIF version

Theorem ordthmeo 21415
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordthmeo.1 𝑋 = dom 𝑅
ordthmeo.2 𝑌 = dom 𝑆
Assertion
Ref Expression
ordthmeo ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)))

Proof of Theorem ordthmeo
StepHypRef Expression
1 ordthmeo.1 . . 3 𝑋 = dom 𝑅
2 ordthmeo.2 . . 3 𝑌 = dom 𝑆
31, 2ordthmeolem 21414 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)))
4 isocnv 6480 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → 𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋))
52, 1ordthmeolem 21414 . . . 4 ((𝑆𝑊𝑅𝑉𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
653com12 1261 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑆, 𝑅 (𝑌, 𝑋)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
74, 6syl3an3 1353 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅)))
8 ishmeo 21372 . 2 (𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)) ↔ (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ∧ 𝐹 ∈ ((ordTop‘𝑆) Cn (ordTop‘𝑅))))
93, 7, 8sylanbrc 695 1 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅)Homeo(ordTop‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  ccnv 5037  dom cdm 5038  cfv 5804   Isom wiso 5805  (class class class)co 6549  ordTopcordt 15982   Cn ccn 20838  Homeochmeo 21366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-topgen 15927  df-ordt 15984  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-hmeo 21368
This theorem is referenced by:  icopnfhmeo  22550  iccpnfhmeo  22552  xrhmeo  22553  xrge0iifhmeo  29310
  Copyright terms: Public domain W3C validator