Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppginv | Structured version Visualization version GIF version |
Description: Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
oppginv.2 | ⊢ 𝐼 = (invg‘𝑅) |
Ref | Expression |
---|---|
oppginv | ⊢ (𝑅 ∈ Grp → 𝐼 = (invg‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | oppginv.2 | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
3 | 1, 2 | grpinvf 17289 | . . 3 ⊢ (𝑅 ∈ Grp → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) |
4 | eqid 2610 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | oppgbas.1 | . . . . . 6 ⊢ 𝑂 = (oppg‘𝑅) | |
6 | eqid 2610 | . . . . . 6 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
7 | 4, 5, 6 | oppgplus 17602 | . . . . 5 ⊢ ((𝐼‘𝑥)(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)(𝐼‘𝑥)) |
8 | eqid 2610 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | 1, 4, 8, 2 | grprinv 17292 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)(𝐼‘𝑥)) = (0g‘𝑅)) |
10 | 7, 9 | syl5eq 2656 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐼‘𝑥)(+g‘𝑂)𝑥) = (0g‘𝑅)) |
11 | 10 | ralrimiva 2949 | . . 3 ⊢ (𝑅 ∈ Grp → ∀𝑥 ∈ (Base‘𝑅)((𝐼‘𝑥)(+g‘𝑂)𝑥) = (0g‘𝑅)) |
12 | 5 | oppggrp 17610 | . . . 4 ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Grp) |
13 | 5, 1 | oppgbas 17604 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
14 | 5, 8 | oppgid 17609 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑂) |
15 | eqid 2610 | . . . . 5 ⊢ (invg‘𝑂) = (invg‘𝑂) | |
16 | 13, 6, 14, 15 | isgrpinv 17295 | . . . 4 ⊢ (𝑂 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼‘𝑥)(+g‘𝑂)𝑥) = (0g‘𝑅)) ↔ (invg‘𝑂) = 𝐼)) |
17 | 12, 16 | syl 17 | . . 3 ⊢ (𝑅 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼‘𝑥)(+g‘𝑂)𝑥) = (0g‘𝑅)) ↔ (invg‘𝑂) = 𝐼)) |
18 | 3, 11, 17 | mpbi2and 958 | . 2 ⊢ (𝑅 ∈ Grp → (invg‘𝑂) = 𝐼) |
19 | 18 | eqcomd 2616 | 1 ⊢ (𝑅 ∈ Grp → 𝐼 = (invg‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 +gcplusg 15768 0gc0g 15923 Grpcgrp 17245 invgcminusg 17246 oppgcoppg 17598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-oppg 17599 |
This theorem is referenced by: oppgsubg 17616 oppgtgp 21712 tgpconcomp 21726 |
Copyright terms: Public domain | W3C validator |