MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmord Structured version   Visualization version   GIF version

Theorem nnmord 7576
Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmord ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))

Proof of Theorem nnmord
StepHypRef Expression
1 nnmordi 7575 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
21ex 448 . . . . 5 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
32com23 83 . . . 4 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
43impd 445 . . 3 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
543adant1 1071 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
6 ne0i 3879 . . . . . . . 8 ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (𝐶 ·𝑜 𝐵) ≠ ∅)
7 nnm0r 7554 . . . . . . . . . 10 (𝐵 ∈ ω → (∅ ·𝑜 𝐵) = ∅)
8 oveq1 6534 . . . . . . . . . . 11 (𝐶 = ∅ → (𝐶 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
98eqeq1d 2611 . . . . . . . . . 10 (𝐶 = ∅ → ((𝐶 ·𝑜 𝐵) = ∅ ↔ (∅ ·𝑜 𝐵) = ∅))
107, 9syl5ibrcom 235 . . . . . . . . 9 (𝐵 ∈ ω → (𝐶 = ∅ → (𝐶 ·𝑜 𝐵) = ∅))
1110necon3d 2802 . . . . . . . 8 (𝐵 ∈ ω → ((𝐶 ·𝑜 𝐵) ≠ ∅ → 𝐶 ≠ ∅))
126, 11syl5 33 . . . . . . 7 (𝐵 ∈ ω → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐶 ≠ ∅))
1312adantr 479 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐶 ≠ ∅))
14 nnord 6942 . . . . . . . 8 (𝐶 ∈ ω → Ord 𝐶)
15 ord0eln0 5682 . . . . . . . 8 (Ord 𝐶 → (∅ ∈ 𝐶𝐶 ≠ ∅))
1614, 15syl 17 . . . . . . 7 (𝐶 ∈ ω → (∅ ∈ 𝐶𝐶 ≠ ∅))
1716adantl 480 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶𝐶 ≠ ∅))
1813, 17sylibrd 247 . . . . 5 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → ∅ ∈ 𝐶))
19183adant1 1071 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → ∅ ∈ 𝐶))
20 oveq2 6535 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵))
2120a1i 11 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝐵 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵)))
22 nnmordi 7575 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
23223adantl2 1210 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
2421, 23orim12d 878 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
2524con3d 146 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
26 simpl3 1058 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐶 ∈ ω)
27 simpl1 1056 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐴 ∈ ω)
28 nnmcl 7556 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·𝑜 𝐴) ∈ ω)
2926, 27, 28syl2anc 690 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ ω)
30 simpl2 1057 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐵 ∈ ω)
31 nnmcl 7556 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·𝑜 𝐵) ∈ ω)
3226, 30, 31syl2anc 690 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐵) ∈ ω)
33 nnord 6942 . . . . . . . . 9 ((𝐶 ·𝑜 𝐴) ∈ ω → Ord (𝐶 ·𝑜 𝐴))
34 nnord 6942 . . . . . . . . 9 ((𝐶 ·𝑜 𝐵) ∈ ω → Ord (𝐶 ·𝑜 𝐵))
35 ordtri2 5661 . . . . . . . . 9 ((Ord (𝐶 ·𝑜 𝐴) ∧ Ord (𝐶 ·𝑜 𝐵)) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
3633, 34, 35syl2an 492 . . . . . . . 8 (((𝐶 ·𝑜 𝐴) ∈ ω ∧ (𝐶 ·𝑜 𝐵) ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
3729, 32, 36syl2anc 690 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
38 nnord 6942 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
39 nnord 6942 . . . . . . . . 9 (𝐵 ∈ ω → Ord 𝐵)
40 ordtri2 5661 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
4138, 39, 40syl2an 492 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
4227, 30, 41syl2anc 690 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
4325, 37, 423imtr4d 281 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵))
4443ex 448 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵)))
4544com23 83 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (∅ ∈ 𝐶𝐴𝐵)))
4619, 45mpdd 41 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵))
4746, 19jcad 553 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (𝐴𝐵 ∧ ∅ ∈ 𝐶)))
485, 47impbid 200 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  c0 3873  Ord word 5625  (class class class)co 6527  ωcom 6934   ·𝑜 comu 7422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-oadd 7428  df-omul 7429
This theorem is referenced by:  nnmword  7577  nnneo  7595  ltmpi  9582
  Copyright terms: Public domain W3C validator