Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0sumltlt | Structured version Visualization version GIF version |
Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019.) |
Ref | Expression |
---|---|
nn0sumltlt | ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 11178 | . . 3 ⊢ (𝑎 ∈ ℕ0 → 𝑎 ∈ ℝ) | |
2 | nn0re 11178 | . . 3 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ) | |
3 | nn0re 11178 | . . 3 ⊢ (𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ) | |
4 | ltaddsub2 10382 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) | |
5 | 1, 2, 3, 4 | syl3an 1360 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 ↔ 𝑏 < (𝑐 − 𝑎))) |
6 | nn0ge0 11195 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → 0 ≤ 𝑎) | |
7 | 6 | 3ad2ant1 1075 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 0 ≤ 𝑎) |
8 | 1, 3 | anim12ci 589 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
9 | 8 | 3adant2 1073 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ)) |
10 | subge02 10423 | . . . . . 6 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (𝑐 − 𝑎) ≤ 𝑐)) | |
11 | 10 | bicomd 212 | . . . . 5 ⊢ ((𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑐 − 𝑎) ≤ 𝑐 ↔ 0 ≤ 𝑎)) |
13 | 7, 12 | mpbird 246 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ≤ 𝑐) |
14 | 2 | 3ad2ant2 1076 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑏 ∈ ℝ) |
15 | nn0resubcl 40349 | . . . . . 6 ⊢ ((𝑐 ∈ ℕ0 ∧ 𝑎 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) | |
16 | 15 | ancoms 468 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
17 | 16 | 3adant2 1073 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑐 − 𝑎) ∈ ℝ) |
18 | 3 | 3ad2ant3 1077 | . . . 4 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → 𝑐 ∈ ℝ) |
19 | ltletr 10008 | . . . 4 ⊢ ((𝑏 ∈ ℝ ∧ (𝑐 − 𝑎) ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) | |
20 | 14, 17, 18, 19 | syl3anc 1318 | . . 3 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑏 < (𝑐 − 𝑎) ∧ (𝑐 − 𝑎) ≤ 𝑐) → 𝑏 < 𝑐)) |
21 | 13, 20 | mpan2d 706 | . 2 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → (𝑏 < (𝑐 − 𝑎) → 𝑏 < 𝑐)) |
22 | 5, 21 | sylbid 229 | 1 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 ∈ wcel 1977 class class class wbr 4583 (class class class)co 6549 ℝcr 9814 0cc0 9815 + caddc 9818 < clt 9953 ≤ cle 9954 − cmin 10145 ℕ0cn0 11169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 |
This theorem is referenced by: ply1mulgsumlem1 41968 |
Copyright terms: Public domain | W3C validator |