MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoeq0 Structured version   Visualization version   GIF version

Theorem nmoeq0 22350
Description: The operator norm is zero only for the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1 𝑁 = (𝑆 normOp 𝑇)
nmo0.2 𝑉 = (Base‘𝑆)
nmo0.3 0 = (0g𝑇)
Assertion
Ref Expression
nmoeq0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 })))

Proof of Theorem nmoeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . 11 ((𝑁𝐹) = 0 → (𝑁𝐹) = 0)
2 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
31, 2syl6eqel 2696 . . . . . . . . . 10 ((𝑁𝐹) = 0 → (𝑁𝐹) ∈ ℝ)
4 nmo0.1 . . . . . . . . . . . 12 𝑁 = (𝑆 normOp 𝑇)
54isnghm2 22338 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁𝐹) ∈ ℝ))
65biimpar 501 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇))
73, 6sylan2 490 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 ∈ (𝑆 NGHom 𝑇))
8 nmo0.2 . . . . . . . . . 10 𝑉 = (Base‘𝑆)
9 eqid 2610 . . . . . . . . . 10 (norm‘𝑆) = (norm‘𝑆)
10 eqid 2610 . . . . . . . . . 10 (norm‘𝑇) = (norm‘𝑇)
114, 8, 9, 10nmoi 22342 . . . . . . . . 9 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
127, 11sylan 487 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)))
13 simplr 788 . . . . . . . . . 10 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝑁𝐹) = 0)
1413oveq1d 6564 . . . . . . . . 9 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) = (0 · ((norm‘𝑆)‘𝑥)))
15 simpl1 1057 . . . . . . . . . . . 12 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝑆 ∈ NrmGrp)
168, 9nmcl 22230 . . . . . . . . . . . 12 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1715, 16sylan 487 . . . . . . . . . . 11 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
1817recnd 9947 . . . . . . . . . 10 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
1918mul02d 10113 . . . . . . . . 9 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (0 · ((norm‘𝑆)‘𝑥)) = 0)
2014, 19eqtrd 2644 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((𝑁𝐹) · ((norm‘𝑆)‘𝑥)) = 0)
2112, 20breqtrd 4609 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ≤ 0)
22 simpll2 1094 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → 𝑇 ∈ NrmGrp)
23 simpl3 1059 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
24 eqid 2610 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
258, 24ghmf 17487 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2623, 25syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹:𝑉⟶(Base‘𝑇))
2726ffvelrnda 6267 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ (Base‘𝑇))
2824, 10nmge0 22231 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))
2922, 27, 28syl2anc 691 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))
3024, 10nmcl 22230 . . . . . . . . 9 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
3122, 27, 30syl2anc 691 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ)
32 letri3 10002 . . . . . . . 8 ((((norm‘𝑇)‘(𝐹𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))))
3331, 2, 32sylancl 693 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (((norm‘𝑇)‘(𝐹𝑥)) ≤ 0 ∧ 0 ≤ ((norm‘𝑇)‘(𝐹𝑥)))))
3421, 29, 33mpbir2and 959 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → ((norm‘𝑇)‘(𝐹𝑥)) = 0)
35 nmo0.3 . . . . . . . 8 0 = (0g𝑇)
3624, 10, 35nmeq0 22232 . . . . . . 7 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑥) ∈ (Base‘𝑇)) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (𝐹𝑥) = 0 ))
3722, 27, 36syl2anc 691 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (((norm‘𝑇)‘(𝐹𝑥)) = 0 ↔ (𝐹𝑥) = 0 ))
3834, 37mpbid 221 . . . . 5 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) ∧ 𝑥𝑉) → (𝐹𝑥) = 0 )
3938mpteq2dva 4672 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → (𝑥𝑉 ↦ (𝐹𝑥)) = (𝑥𝑉0 ))
4026feqmptd 6159 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 = (𝑥𝑉 ↦ (𝐹𝑥)))
41 fconstmpt 5085 . . . . 5 (𝑉 × { 0 }) = (𝑥𝑉0 )
4241a1i 11 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → (𝑉 × { 0 }) = (𝑥𝑉0 ))
4339, 40, 423eqtr4d 2654 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) = 0) → 𝐹 = (𝑉 × { 0 }))
4443ex 449 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 → 𝐹 = (𝑉 × { 0 })))
454, 8, 35nmo0 22349 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)
46453adant3 1074 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) = 0)
47 fveq2 6103 . . . 4 (𝐹 = (𝑉 × { 0 }) → (𝑁𝐹) = (𝑁‘(𝑉 × { 0 })))
4847eqeq1d 2612 . . 3 (𝐹 = (𝑉 × { 0 }) → ((𝑁𝐹) = 0 ↔ (𝑁‘(𝑉 × { 0 })) = 0))
4946, 48syl5ibrcom 236 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 = (𝑉 × { 0 }) → (𝑁𝐹) = 0))
5044, 49impbid 201 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) = 0 ↔ 𝐹 = (𝑉 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815   · cmul 9820  cle 9954  Basecbs 15695  0gc0g 15923   GrpHom cghm 17480  normcnm 22191  NrmGrpcngp 22192   normOp cnmo 22319   NGHom cnghm 22320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-ghm 17481  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nmo 22322  df-nghm 22323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator