MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmobndseqiALT Structured version   Visualization version   GIF version

Theorem nmobndseqiALT 27019
Description: Alternate shorter proof of nmobndseqi 27018 based on axioms ax-reg 8380 and ax-ac2 9168 instead of ax-cc 9140. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmobndseqiALT ((𝑇:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → (𝑁𝑇) ∈ ℝ)
Distinct variable groups:   𝑓,𝑘,𝐿   𝑘,𝑌   𝑓,𝑀,𝑘   𝑇,𝑓,𝑘   𝑓,𝑋,𝑘   𝑘,𝑁
Allowed substitution hints:   𝑈(𝑓,𝑘)   𝑁(𝑓)   𝑊(𝑓,𝑘)   𝑌(𝑓)

Proof of Theorem nmobndseqiALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 impexp 461 . . . . . 6 (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
2 r19.35 3065 . . . . . . 7 (∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ (∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘))
32imbi2i 325 . . . . . 6 ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
41, 3bitr4i 266 . . . . 5 (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
54albii 1737 . . . 4 (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
6 nnex 10903 . . . . . 6 ℕ ∈ V
7 fveq2 6103 . . . . . . . 8 (𝑦 = (𝑓𝑘) → (𝐿𝑦) = (𝐿‘(𝑓𝑘)))
87breq1d 4593 . . . . . . 7 (𝑦 = (𝑓𝑘) → ((𝐿𝑦) ≤ 1 ↔ (𝐿‘(𝑓𝑘)) ≤ 1))
9 fveq2 6103 . . . . . . . . 9 (𝑦 = (𝑓𝑘) → (𝑇𝑦) = (𝑇‘(𝑓𝑘)))
109fveq2d 6107 . . . . . . . 8 (𝑦 = (𝑓𝑘) → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇‘(𝑓𝑘))))
1110breq1d 4593 . . . . . . 7 (𝑦 = (𝑓𝑘) → ((𝑀‘(𝑇𝑦)) ≤ 𝑘 ↔ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘))
128, 11imbi12d 333 . . . . . 6 (𝑦 = (𝑓𝑘) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) ↔ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
136, 12ac6n 9190 . . . . 5 (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℕ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
14 nnre 10904 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1514anim1i 590 . . . . . 6 ((𝑘 ∈ ℕ ∧ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘)) → (𝑘 ∈ ℝ ∧ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘)))
1615reximi2 2993 . . . . 5 (∃𝑘 ∈ ℕ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
1713, 16syl 17 . . . 4 (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
185, 17sylbi 206 . . 3 (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
19 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
20 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
21 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
22 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
23 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
24 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
25 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
2619, 20, 21, 22, 23, 24, 25nmobndi 27014 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘)))
2718, 26syl5ibr 235 . 2 (𝑇:𝑋𝑌 → (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) → (𝑁𝑇) ∈ ℝ))
2827imp 444 1 ((𝑇:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → (𝑁𝑇) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816  cle 9954  cn 10897  NrmCVeccnv 26823  BaseSetcba 26825  normCVcnmcv 26829   normOpOLD cnmoo 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-r1 8510  df-rank 8511  df-card 8648  df-ac 8822  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-nmoo 26984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator